
Design and Analysis of Algorithms I

David Ng

Fall 2017

Contents

1 September 12, 2017 4
1.1 Introduction . 4

2 September 14, 2017 4
2.1 Proofs of Correctness . 4
2.2 Importance of Algorithm Correctness . 6
2.3 Bound Functions and Assertions . 6
2.4 Trace of Execution and Recursion Trees 7

3 September 19, 2017 8
3.1 Proof of Correctness - While Loop . 8
3.2 Establishing Loop Invariants . 10
3.3 Partial Correctness . 10
3.4 Bound Function for While Loops . 11
3.5 Termination . 12

4 September 21, 2017 13
4.1 Running Time - While Loop . 13
4.2 Storage Space - While Loop . 14
4.3 Summation Identities (high school math) 14
4.4 Bounding Summation Terms . 15
4.5 Running Time Considerations . 17

5 September 26, 2017 17
5.1 Running Time - Recursion . 17
5.2 Storage Space - Recursion . 19

6 September 28, 2017 20
6.1 Asymptotic Notation . 20
6.2 Big-Oh Notation . 21
6.3 Big-Omega Notation . 21
6.4 Big-Theta Notation . 22
6.5 Little-Oh Notation . 22
6.6 Little-Omega Notation . 23
6.7 Standard Functions . 24

7 October 3, 2017 24
7.1 Divide and Conquer - Sorting . 24

1

David Ng Design and Analysis of Algorithms I

8 October 5, 2017 26
8.1 Divide and Conquer - Integer Multiplication 26
8.2 Master Theorem . 31

9 October 10, 2017 32
9.1 Divide and Conquer - Closest Points in a Plane 32

10 October 12, 2017 34
10.1 Divide and Conquer - Median Finding and Selection 34

11 October 17, 2017 37
11.1 Dynamic Programming . 37
11.2 Memoization . 39
11.3 Memoization Efficiency . 41
11.4 Dynamic Programing vs Memoization . 43

12 October 19, 2017 43
12.1 Divide and Conquer - Longest Common Subsequence 43
12.2 Dynamic Programming - Longest Common Subsequence 45
12.3 Memoization - Longest Common Subsequence 47

13 October 24, 2017 49

14 October 31, 2017 49
14.1 Greedy Algorithms - Minimizing Sum of Completion Times 49

15 November 2, 2017 54
15.1 Greedy Algorithms - Unweighted Activity Selection 54
15.2 Greedy Algorithm Design Process . 58

16 November 7, 2017 59
16.1 Greedy Algorithms - Data Compression and Huffman Trees 59

17 November 9, 2017 65
17.1 Greedy Algorithms - Offline Caching . 65

18 November 14, 2017 67
18.1 Computational Problems and Languages 67
18.2 Turing Machines . 69
18.3 Complexity Class P . 70
18.4 Cobham-Edmonds Thesis . 70
18.5 Historical Figures in Theory of Computation 72

19 November 16, 2017 73
19.1 Nondeterministic Turing Machines . 73
19.2 Verification of a Language . 75
19.3 Verification Process . 77
19.4 Equivalence of Models . 78
19.5 Complexity Class NP . 79

20 November 21, 2017 80
20.1 Computing Functions . 80

2

David Ng Design and Analysis of Algorithms I

20.2 Reducibilities . 81
20.3 Polynomial-Time Many-One Reduction Process 83
20.4 Historical Figures in Theory of Computation Cont’d 84

21 November 23, 2017 85
21.1 NP-Completeness . 85
21.2 Historical Figures in Theory of Computation Cont’d 86

22 November 28, 2017 86
22.1 Establishing NP-Completeness . 86

23 November 30, 2017 87

24 December 5, 2017 87
24.1 Additional NP-Complete Problems . 87
24.2 Complications . 90
24.3 Encodings . 91

3

David Ng Design and Analysis of Algorithms I

§1 September 12, 2017

§1.1 Introduction

This course concerns what is means for an algorithm to correctly solve a computational
problem. We want to do this efficiently, and prove that we have done so. We are also
concerned with designing algorithms that solve these problems, and prove that some
problems cannot be solved efficiently. By the end of this course, we will be able to
understand preconditions and postconditions, and use these to define computational
problems. We will also be able to give proofs of correctness of algorithms, and analyze
the running time of algorithms through summations and recurrences using asymptotic
notation. (Class wasted).

§2 September 14, 2017

§2.1 Proofs of Correctness

A specification of requirements for a computational problem is something that we want
to solve using a computer program, and includes the following:

• Precondition: A condition or property that is either true or false, and that is
satisfied by any well formed instance of inputs for this problem.

• Postcondition: A condition that is satisfied if this problem is solved. This might
include relationships between inputs as well as outputs, as well as initial and final
values of global data that is accessed and modified.

Example 2.1 (Fibonacci Numbers Again)

Suppose that n is a non-negative integer. Then the nth Fibonacci number Fn is
defined using the following rule,

Fn =

0 if n = 0,

1 if n = 1,

Fn−2 + Fn−1 if n ≥ 2.

The problem of computing the nth Fibonacci number, when given a non-negative
integer n as input can be defined using preconditions and postconditions. The
precondition is that a non-negative integer n is given as input. The postcondition is
that the nth Fibonacci number Fn is returned as output.

An algorithm can be defined as an effective method expressed as a finite list of well-
defined instructions for solving a computational problem. Algorithms can be presented
using English, using pseudocode, or using executable code. Below is pseudocode for an
algorithm that computes the Fibonacci numbers.

integer fib (integer n)

{

if (n == 0)

{

return 0

}

4

David Ng Design and Analysis of Algorithms I

else if (n == 1)

{

return 1

}

else

{

return fib(n-2) + fib(n-1)

}

}

An algorithm for a given computational problem is correct if whenever the problem’s
precondition is satisfied and the algorithm is executed, then the execution of the algorithm
eventually ends, and the problem’s postcondition is satisfied when this happens. There
are no changes to the system state that are not otherwise documented in the preconditions
and postconditions. Changes should not be caused by the execution of the algorithm
if the precondition holds when execution begins. Thus, only undocumented variables
whose values might change, should be local variables (variables that do not exist before
and after execution). This does not promise anything regarding what should occur when
the precondition is not satisfied, and the algorithm is executed.

The following is a proof that the fib algorithm is correct. It is assumed that integer
arithmetic is correct and exact when included in an algorithm. It is also assumed that
equality tests for integers are performed correctly during execution.

Theorem 2.2 (Fibonacci Algorithm)

Suppose that n is a non-negative integer and that the algorithm fib is executed
with n as input. The execution of this algorithm ends after it has output the nth
Fibonacci number.

Proof. This will be proved by induction on n. The strong form of induction is used, with
the base cases n = 0 and n = 1. First, suppose that n = 0. Then, on input n, line 1
succeeds, so execution continues with line 2. This causes execution to terminate with
F0 = 0 returned. When n = 1, line 1 fails, so the execution continues on line 3. This
succeeds, so continuing on line 4, this causes F1 = 1 to be returned.

Now, let k be an integer k ≥ 1. Suppose that n is a non-negative integer such that
0 ≤ n ≤ k. When executed with n as input, fib eventually terminates with Fn as output.
Now, we need to show that when given n = k + 1, then fib terminates with Fk+1 = Fn
as output. Since k ≥ 1, n ≥ 2. Thus, after failing both conditions at lines 1 and 3, it
reaches line 5.

Here, we reach a recursive execution with input n− 2. Since n = k + 1 ≥ 2, we have
0 ≤ n−2 = k−1 ≤ k. It follows by the inductive hypothesis that this recursive execution
of the algorithm eventually ends with Fn−2 = Fk−1. We also have a recursive execution
on input n− 1, which produces Fn−1 = Fk as output through similar reasoning. Line 5
then ends with Fk+1 = Fk + Fk−1 = Fn−1 + Fn−2, as to be shown.

Note that we have made use of mathematical induction on n. This traces the execution
of the algorithm on various kinds of input in order to establish the basis and complete
the inductive step. We can check by inspection that the only input accessed is specified
in the precondition, and no global data is accessed. The algorithm also does not modify
any input or global data, and the only output returned is specified by the postcondition.
Thus, it has no undocumented side effects, and can be considered correct.

5

David Ng Design and Analysis of Algorithms I

§2.2 Importance of Algorithm Correctness

We care about the correctness of programs, since some problems are safety-critical. For
instance, library software should be treated in this way, as many people make use of it in
ways that cannot be anticipated or controlled. Testing and debugging are complementary
to formal proofs of correctness. Dynamic testing allows working code to be run and
checked, making it more effective in the identification of coding errors and errors from
other assumptions. However, testing can almost never be exhaustive or complete, as
there will likely be missed situations or cases. Understanding a proof of the correctness
of an algorithm can be helpful for more effective and extensive test design, and more
effective debugging.

It is important that there are no undocumented side effects, especially in the case of
library software. When this is used in larger systems, undocumented side effects can
cause systems to fail. Additionally, since adding code to a software library entails adding
to bedrock that others will depend on, it is important to ensure that the code is built
correctly. Inline documentation should include the preconditions and postconditions, a
proof of correctness of the algorithm, and time and space bounds.

§2.3 Bound Functions and Assertions

A bound function for a recursive algorithm is a mathematical function that is defined on
the inputs and global data that are accessed and modified when the recursive algorithm
is executed - specifically on those inputs and global data satisfying the precondition for
the problem being solved and that also satisfies the following properties:

1. This is an integer-valued function.

2. Whenever the algorithm is applied recursively, the value of the function has been
decreased by at least one.

3. If the function’s value is less than or equal to zero when the algorithm is applied,
then the algorithm does not call itself recursively during this execution.

Example 2.3 (Bound Function)

Consider the algorithm fib and the function

f(n) = n.

Since n is an integer input, this is certainly an integer-valued function. As noted in
the proof of the correctness of this algorithm, the value of this function is decreased
by at least one every time the algorithm is replied recursively. It was also noted
that n ≥ 0 whenever this algorithm is recursively applied. It follows that it is only
possible that f(n) = n ≤ 0 under these conditions if n = 0. In this case, the test at
line 1 passes, execution continues with line 2, and execution ends immediately after
that without the algorithm having called itself recursively. This function is therefore
a bound function of the recursive algorithm fib.

The bound function was identified just by checking that all of the properties listed in
the definition were satisfied. This only requires an examination of the pseudocode of the
algorithm. Establishing a bound function for a recursive algorithm will often (but not
always) be as easy as this. It is often possible to prove properties of recursive algorithms

6

David Ng Design and Analysis of Algorithms I

using mathematical induction on the initial value of the bound function. This is how the
correctness of recursive algorithms will generally be proved.

An assertion is a boolean condition (or predicate) involving an algorithm’s inputs,
local variables, outputs, and possibly global data. It is assumed to be satisfied at a
specific point in a computation before execution, or immediately before or after a specific
instruction in the algorithm has been executed. Assertions can be used to document
significant parts of the proof of correctness of the algorithm. If they are reasonably
complete, a reader may see the proof of correctness just by reading the bound function
and assertions. Many programming languages include statements with names such as
assert that allow assertions to be actively checked when programs are tested. This
makes the code self-checking. Ideally, the designer of an algorithm should supply a proof
of its correctness. Other people wishing to use this algorithm should also have access to
this proof.

Example 2.4 (Assertion)

Consider the fib algorithm. Assertions only need to be satisfied during execution
when the precondition is initially satisfied. Thus the assertion that “n is an integer
input such that n ≥ 0” can be listed immediately before line 1 of the fib algorithm.
Since the test at line 1 has been passed if we have arrived at step 2, the assertion
shown between lines 1 and 2 in the code should also reflect this, as “n is an integer
input whose value is 0”. The assertion immediately following line 2 should also
reflect the fact that the output has been returned in this case. Thus, “n is an integer
input whose value is 0”, and “the value Fn = F0 = 0 has been returned as output”.
Assertions for later points in the pseudocode should also reflect what is known when
each point is reached.

§2.4 Trace of Execution and Recursion Trees

A trace of execution of an algorithm on an input is a listing of the statements that
are performed when the algorithm is executed on this input, along with a description
of the effects of these statements. If the algorithm is recursive, then one execution of
the algorithm will often include one or more other executions of the same algorithm on
different inputs. One way to deal with this when providing a trace of execution is to
number the traces of all the executions that are included, and then give a separate trace
of execution for each providing cross-references between traces as needed.

A recursion tree is a tree that corresponds to an execution of a recursive algorithm
on a fixed input and shows the relationship between all the different executions that get
made along the way. The root of this tree corresponds to the original execution of the
algorithm. If the algorithm calls itself recursively on an execution, then the node for this
execution has a child corresponding to each of the recursive calls that it makes. If the
algorithm does not call itself recursively then the node for this execution does not have
any children at all and is a leaf in the tree.

Recursion trees help make sense of all the different traces of execution that are needed
when one wants to consider the execution of a recursive algorithm on a particular input.
They are also very helpful when proving interesting things about the running times and
storage requirements for recursive algorithms.

7

David Ng Design and Analysis of Algorithms I

§3 September 19, 2017

§3.1 Proof of Correctness - While Loop

Consider an algorithm that includes a while loop for a given computational problem. An
assertion is a loop invariant for this while loop if it is satisfied at the following times:

1. At the beginning of every execution of the while loop.

2. At the beginning of every execution of the body of the while loop.

3. At the end of every execution of the body of the while loop.

4. At the end of every execution of the while loop.

To understand proofs of correctness involving while loops, we will once again consider
the problem of finding the nth Fibonacci number Fn given an input of n. Now, we
make use of a while loop for this calculation. Recall that the precondition is that a
non-negative integer n is given as input, and the postcondition is that Fn returned as
the output. Below is pseudocode for an algorithm that computes the Fibonacci numbers
using a while loop.

integer fibLoop (integer n)

{

if (n == 0)

{

return 0

}

else

{

integer [] F = new integer[n+1]

F[0] = 0

F[1] = 1

integer i = 1

while (i < n)

{

F[i+1] = F[i-1] + F[i]

i = i + 1

}

return F[n]

}

}

Consider the algorithm fibLoop for the Fibonacci number computation problem, and
the while loop included in this algorithm. The following is a loop invariant for this while
loop:

1. n is an input integer such that n ≥ 1.

2. F is a variable integer array with length n+ 1.

3. i is an integer variable such that 1 ≤ i ≤ n.

4. F [j] = Fj for every integer j such that 0 ≤ j ≤ i.

To show that this is indeed a loop invariant, we will need to show that all components of
the loop invariant are satisfied at all times required by the definition of the loop invariant.

8

David Ng Design and Analysis of Algorithms I

Proof. First, we show that the proposed loop invariant is satisfied at the beginning of
every execution of the while loop. This serves as the base case. We call this the first
claim.

1. For n, when it is equal to 0 it is trivially satisfied since the while loop is not reached.
If instead it was greater than or equal to 1, then since there is no change in n, it is
always the case that n ≥ 1. This while loop is never reached again, so we do not
need to consider what happens when we reach this while loop again.

2. F is declared to be an integer array with a length of n+ 1 in the third step. This
holds by the time we first reach the while loop.

3. The variable i is declared as an integer variable with a value of 1 in the sixth step,
thus it is certainly the case that 1 ≤ i ≤ n when we reach the loop.

4. When we reach the while loop, we have set F [0] = 0 and F [1] = 1. Thus, when
we reach the while loop at i = 1, F [j] = Fj indeed holds for all j in the range of
0 ≤ j ≤ i.

Now, we show that if the loop invariant is satisfied at the beginning of an execution of
the body, then it will also be satisfied at the end of the execution of the body. This forms
the inductive case, since we can use the base case and repeatedly apply this inductive
case. We call this the second claim.

1. At the beginning of the loop, we have supposed that n ≥ 1. Thus, since n does not
change, it remains the case that n ≥ 1 at the end of the execution of the body of
the loop.

2. It was supposed that F is an integer array with length n+ 1 at the beginning of
the execution of the body of the loop. However, neither the loop test nor the loop
body change the type or length of F .

3. At the beginning of the execution of the body of the loop, 1 ≤ i ≤ n. Additionally,
the loop test passed, so i < n. The ninth step involves adding 1 to i, so i is now
bounded by i ≤ n. Therefore, at the end of this execution of the loop body, it
remains that 1 ≤ i ≤ n.

4. F [j] = Fj holds as specified for 1 ≤ j ≤ i at the beginning of the loop body
execution. Moreover, we know that 1 ≤ i ≤ n− 1 from the situation above. Thus,
when we modify the array in the eight step, it remains that we have not exceeded
the array size since 2 ≤ i+1 ≤ n, and F [i+1] = F [i−1]+F [i] = Fi−1 +Fi = Fi+ 1
as required. At the end of step 8, we have F [j] = Fj for all 0 ≤ j ≤ i+ 1. However,
we increment i in step 9, so it remains that F [j] = Fj for all 0 ≤ j ≤ i.

We shall now prove by induction by using the previous two claims that the loop
invariant is indeed correct. For the base case of one loop execution, then the loop is
clearly reached, so the loop invariant holds as shown by the first claim. After this, we
only have the loop test that does not change any value, so the loop invariant holds at the
beginning of the first execution of the loop body. By the second claim, the loop invariant
is also true at the end of execution of the loop body.

Now, for the inductive hypothesis, suppose that the loop invariant holds for k ≥ 1 loop
executions. We will now show that for k+ 1 loop executions, the loop invariant still holds.
We know from the inductive hypothesis at k loop executions that the loop invariant still
holds at the end of the body. The loop test does not change any variable, so the loop

9

David Ng Design and Analysis of Algorithms I

invariant holds at the beginning of the k + 1 loop execution. By the second claim, that
the loop invariant holds at the end of the loop body execution.

By using the first and second claims, we have shown that the loop invariant holds
whenever we reach the loop, at the beginning of each loop execution, and at the end of
each loop execution. We still need to show that the loop invariant holds at the end of
the execution of the while loop. The loop is reached whenever n ≥ 1. For n = 1, we have
reached the loop with the loop invariant true, and then after the loop test where nothing
is changed, the loop invariant still holds when loop execution ends. For n ≥ 2, the loop
body is executed at least once, with the loop invariant holding for the last execution.
Since the loop test does not change any variables, when we leave the loop, the loop
invariant still holds.

§3.2 Establishing Loop Invariants

To simplify the process of establishing the loop invariant, we make use of the following
theorem.

Theorem 3.1 (First Loop Theorem)

Consider that assertion A pertaining to an algorithm with a while loop of the form

while (t)

{

S

}

If an execution of the loop test t has no side effects (not changing the value of any
inputs, variables, or global data), A is satisfied whenever the loop is reached during
an execution of the algorithm (with the problem’s precondition being satisfied), and
A being satisfied at the beginning of execution of loop body S implies that A is
satisfied when execution of the loop body ends, then A is a loop invariant for the
while loop.

The proof of this is a generalization of the previous proof given. The proof is left to
the reader as an exercise ;-).

This theorem makes it easier to prove the loop invariant of fibLoop, as we have
reduced the number of necessary steps. Now, we first need to note that the loop test
does not change any inputs, variables, or global data. Then, we need to state and prove
the first claim, and finally state and prove the second claim. We then apply the loop
theorem to conclude that the loop invariant is indeed correct.

§3.3 Partial Correctness

An algorithm is partially correct if at least one of the following properties is satisfied
whenever this algorithm is executed when the problem’s precondition is satisfied:

1. This execution of the algorithm eventually ends with the problem’s postcondition
satisfied and with no undocumented inputs, no global data accessed, and no
undocumented data being modified.

2. This execution of the algorithm never ends at all.

Well chosen and complete loop invariants are useful because they can be used to establish
the partial correctness of algorithms.

10

David Ng Design and Analysis of Algorithms I

Proposition 3.2 (Partial Correctness of fibLoop)

The fibLoop algorithm is partially correct as an algorithm for computing the nth
Fibonacci number.

Proof. Consider an execution of the algorithm such that the precondition, that the input
n is an integer, is satisfied. By inspection, it is clear that there is no undocumented
access of input, global data, or variables. When n = 0, this ends after executing the first
and second step, where Fn = F0 = 0 is returned and the postcondition is satisfied, thus
proving partial correctness for this case.

When n ≥ 1, we reach the while loop. This loop either terminates, or it does not. In
the case that it does not, then the algorithm does not terminate and thus satisfies the
definition of partial correctness. In the case that it terminates, then it follows that the
loop invariant holds when the execution of the loop ends. The loop test was checked and
failed, so i = n and F [j] = Fj for 0 ≤ j ≤ n. But then since F [n] = Fn is returned, this
satisfies the postcondition and thus establishes partial correctness.

Remark 3.3. Correctness implies partial correctness, but the converse is not true

Consider the following algorithm. It can be shown that the loop invariant for fibLoop
also holds here. Additionally, this algorithm is partially correct. However, it can be
shown that this is not correct, as it does not terminate.

integer badFibLoop (integer n)

{

if (n == 0)

{

return 0

}

else

{

integer [] F = new integer[n+1]

F[0] = 0

F[1] = 1

integer i = 1

while (i < n)

{

i = i

}

return F[n]

}

}

§3.4 Bound Function for While Loops

A loop variant is a bound function for a while loop. It is a an integer-valued, total
function of some of the variables, usually those that are defined when the loop is reached.
If the precondition was satisfied when we execute the algorithm, then the loop variant
must satisfy the following two properties:

1. When the loop body is executed, the value of this function is decreased by at least
one before the loop’s test is checked again.

11

David Ng Design and Analysis of Algorithms I

2. If the value of this function is less than or equal to zero and the loop test is checked,
then the test fails (ending this execution of the loop).

Proposition 3.4

The function f(n, i) = n − i is a loop variant for the while loop of the fibLoop

algorithm.

Proof. Since n and i are integers that are defined and initialized, this is an integer valued
function of variables defined when we reach the loop. When the body of the loop is
executed, i increases by one while n remains constant. Thus, f decreases by one for each
loop. When the value of f ≤ 0, then n− i ≤ 0. But this is exactly when i ≥ n and the
loop test fails. Thus, f is the loop variant.

§3.5 Termination

To prove termination, we make use of the following theorem:

Theorem 3.5 (Second Loop Theorem)

Consider a while loop of the form

while (t)

{

S

}

Suppose additionally that the loop test t has no side effects, a loop variant exists for
the while loop, and that every execution of the loop eventually ends given that the
precondition was satisfied when the loop began. Then, every execution of this while
loop ends. Additionally, the loop variant at the beginning of execution is an upper
bound for the number of loops.

Corollary 3.6

The Second Loop Theorem implies that the execution of a while loop always includes
exactly n− 1 executions of the loop body.

Proposition 3.7

When fibLoop is executed with preconditions satisfied, then this algorithm termi-
nates

Proof. In the case that n = 0, then execution ends after the second step is executed. In
the case that n ≥ 1, the while loop is reached. Since there is a loop variant for this while
loop, and it is clear that there are only two steps in the loop, it follows by the Second
Loop Theorem that this algorithm eventually terminates.

It is clear that if an algorithm is both partially correct and terminates, then this algorithm
is correct. This is a consequence of the definitions of partial correctness, termination,
and correctness. The fibLoop algorithm is therefore correct.

12

David Ng Design and Analysis of Algorithms I

§4 September 21, 2017

§4.1 Running Time - While Loop

To measure the use of resources, we will use analytical techniques to discover bounds for
running times and storage requirements. Additionally, proofs will be given that these
bounds are indeed correct. However, it is not always clear how much the running time
of a given statement in the algorithm is. This may not even be well defined. Thus, to
simplify analysis, we consider a uniform cost criterion where we define the running time
of each step in an algorithm to be unity. The amount of storage needed to store an
element of an elementary data type (such as integer or string) will also be defined to
equal one. Therefore, an array will require storage equivalent to its length.

Example 4.1 (Running Time of fibLoop)

Once again, we will consider the fibLoop algorithm to illustrate the principles of
running time. We will make use of the Second Loop Theorem along with a loop
variant in order to determine an upper bound on the execution of a while loop body.
A formula can then be given for the upper bound of steps executed in the while loop
as a function of input n.

Solution. Recall that the loop variant for the while loop was given as f(n, i) = n − i.
Since i is initialized immediately to 1, the initial value of the function is n− 1. It follows
that the body executes at most n− 1 times. In the particular example with fibLoop,
the value of f decreases by exactly one for each body execution, the loop test fails if and
only if the value of f ≤ 0 when tested, and the loop test must be checked and failed in
order for execution of the loop body to end (there are no return statements, or breaks).

Now, since we execute the loop body k = n− 1 times, this means that the loop test is
executed at most k + 1 = n times since it must be checked after the final execution to
know that the condition is no longer satisfied. We consider the cost of the loop test as a
function of the jth test where 1 ≤ j ≤ n, and denote this as Ttest(j). In our example, we
considered the cost of the test to be 1. Then, clearly the total cost of all executions of
the loop test is

n∑
j=1

Ttest(j) =
n∑
j=1

1 = n.

It follows that we can similarly use j to express the total cost of the loop body as a
function Tbody(j). In this specific case, the loop body consists of two steps on lines 8 and
9, so Tbody(j) = 2. Therefore, the total cost of all loop body executions is

n−1∑
j=1

Tbody(j) =

n−1∑
j=1

2 = 2(n− 1) = 2n− 2.

It follows that the total number of steps for execution of this while loop is simply the
sum, giving us 3n− 2 steps.

After we have considered the running time of the while loop, we can now consider the
running time of the entire algorithm. For n = 0, there are two steps since it executes
lines 1 and 2. When n ≥ 1, the test at line 1 fails, so we now follow the else statement.
Here, there are four statements along with the while loop. This else statement therefore
has (3n− 2) + 4 = 3n+ 2 statements. Lastly, we have a return statement, so we have a

13

David Ng Design and Analysis of Algorithms I

total of 3n+ 4 steps. Therefore, we can conclude that the number of steps executed by
fibLoop on input n is

T (n) =

{
2 if n = 0,

3n+ 4 if n ≥ 1.

�

Remark 4.2. A common mistake is to confuse the loop variant with the initial value it
takes when bounding the cost of the loop. The final expression of running time does not
depend on the variable i, since this is not an input.

§4.2 Storage Space - While Loop

Note that this algorithm only uses three inputs and variables:

1. n is an integer input, so it has unit cost.

2. i is an integer variable, so it also has unit cost.

3. F is an integer array of length n+ 1, so it costs n+ 1 to store.

In this case, i and F are only declared when n ≥ 1. It suffices to add the storage
requirements for each input and variable to define the storage requirements. In the
fibLoop algorithm, the storage space is given as

S(n) =

{
1 if n = 0,

n+ 3 if n ≥ 1.

§4.3 Summation Identities (high school math)

The following identities can be proved by induction. These will be useful for proving
bounds for certain algorithms.

b∑
j=a

1 = b− a+ 1,

n∑
j=1

j =
n(n+ 1)

2
,

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
,

n∑
j=1

j3 =
n2(n+ 1)2

4
,

n∑
k=0

xk =
xn+1 − 1

x− 1
.

14

David Ng Design and Analysis of Algorithms I

§4.4 Bounding Summation Terms

Often, a reasonably good upper bound for a summation can be found by approximating
each term by the largest term. The upper bound is then the number of terms multiplied
by this largest value.

Example 4.3 (Upper Bound)

Consider the summation of
n∑
k=1

k2.

Since this is an increasing function of k, and the largest value is n2, we approximate
the summation as

n∑
k=1

k2 ≤ n · n2 = n3.

However, the bounds obtained by using the previous method are not always close approx-
imations. The following example illustrates the disparity that results.

Example 4.4 (Lower Bound)

Consider again the previous example. The product of the number of terms with the
smallest term is a lower bound for the summation. The smallest value is k2 = 1, so
the approximation becomes

n∑
k=1

k2 ≥ n · 12 = n.

But this is not close to the upper bound approximation at all.

In these cases, we need to split the sum into two or more pieces. The following example
illustrates this concept.

15

David Ng Design and Analysis of Algorithms I

Example 4.5 (Splitting the Sum)

We can split the summation into two parts to obtain

n∑
k=1

k2 =

bn/2c∑
k=1

k2 +

n∑
k=bn/2c+1

k2.

On the right hand side, we see that the original summation is split into ones for
lower values, and one for upper values. For the lower value summation, there are
bn/2c ≥ (n− 1)/2 terms, where each term is greater than or equal to 1. Therefore,
the lower bound on this is

bn/2c∑
k=1

k2 ≥
⌊n

2

⌋
· 1 =

⌊n
2

⌋
≥ n− 1

2
.

For the upper value summation, there are n− bn/2c = dn/2e ≥ n/2 terms, where
each term is greater than or equal to (bn/2c+ 1)2 ≥ ((n+ 1)/2)2. Therefore, the
lower bound on this is

n∑
k=bn/2c+1

k2 ≥ n

2
·
(
n+ 1

2

)2

=
n3

4
+
n2

2
+
n

4
.

It now follows that we add both of these values on the right that act as the lower
bound to find that the summation is cubic with respect to n

n3 ≥
n∑
k=1

k2 =

bn/2c∑
k=1

k2 +
n∑

k=bn/2c+1

k2

≥ n− 1

2
+
n3

4
+
n2

2
+
n

4

=
n3

4
+
n2

2
+

3n

4
− 1

2

≥ n3

4
.

Another method that can be used to bound the summation is through the use of
integrals. Upper and lower bounds can be established through the following theo-
rem.

Theorem 4.6 (Integral Approximation)

Given integers a and b, and an increasing integrable function f(x) defined for all
real numbers a− 1 ≤ x ≤ b+ 1, then the following results when a ≤ k ≤ b∫ b

x=k−1
f(x) =

b∑
k=a

∫ k

x=k−1
f(x) ≤

b∑
k=a

f(k) ≤
b∑

k=a

∫ k+1

x=
f(x) =

∫ b+1

x=a
f(x).

16

David Ng Design and Analysis of Algorithms I

Example 4.7 (Integral Approximation)

Considering the same summation as in the previous examples, we note that f(k) = k2

is an increasing integrable function, with an antiderivative of F (n) = k3/3. Using
a = 1 and b = n, we find that

n∑
k=1

k2 ≥
∫ n

x=0
f(x) = F (n)− F (0) =

n3

3
,

n∑
k=1

k2 ≤
∫ n+1

x=1
f(x) = F (n+ 1)− F (1) =

n3

3
+ n2 + n.

This says that the summation is n3/3 plus another value that is at most quadratic
with respect to n.

§4.5 Running Time Considerations

Through our analyses, we have made use of the uniform cost criterion assumption. One
should note however, that this holds only when all of the inputs, outputs, local variables
and global data used by an algorithm are small (small enough to be represented using
only a constant number of words of computer memory). An alternative is the logarithmic
cost criterion.

Aside from analyzing running time, one may also choose to run the actual code and
time the execution. The advantage of this approach is that simplifying assumptions,
such as uniform cost criterion, are not required. However, execution time is influenced
by many factors. For instance, hardware, compiler and system software, simultaneous
user activity, choice of input data, and the skill of the programmer ultimately affect the
execution time. Sometimes, we may also be concerned with the space required to store
the program, or the time required to code and maintain the program.

§5 September 26, 2017

§5.1 Running Time - Recursion

To demonstrate analysis of the running time of recursive algorithms, consider the fibPair
algorithm, recalling that n ≥ 0 when the precondition is satisfied.

integer[] fibPair (integer n)

{

integer[] F = new integer[2]

if (n == 0)

{

F[0] = 0

F[1] = 1

}

else

{

integer[] oldF = fibPair(n-1)

F[0] = oldF[1]

F[1] = oldF[0] + oldF[1]

}

return F

17

David Ng Design and Analysis of Algorithms I

}

Example 5.1 (Running Time of fibPair)

Determine the running time of the fibPair algorithm.

Solution. We will once again make use of the uniform cost criterion assumption to analyze
the running time of this algorithm. In the case that n = 0, there are exactly five steps,
since the algorithm executes steps 1-4, and then step 8. When n ≥ 1, the algorithm
executes steps 1, 2, 5, 6, 7, and 8 for a total of six steps. However, it also calls itself
recursively in step 5 on input n− 1. Thus,

T (n) =

{
5 if n = 0,

T (n− 1) + 6 if n ≥ 1.

�

In mathematics, a recurrence (or recurrence relation) is generally defined to be a
relation that recursively defines the elements of a sequence of values. For instance,
T (0), T (1), T (2), ... Thus, the running time expression can be viewed as a recurrence that
defines the sequence. When the recurrence relation is simple enough, it may be possible
to guess a solution after a few initial values have been computed.

Example 5.2 (Finding the Closed Form Expression)

The first few values of the recurrence for the running time T of the fibPair algorithm
are

T (0) = 5,

T (1) = T (0) + 6 = 5 + 6 = 11,

T (2) = T (1) + 6 = 11 + 6 = 17,

T (3) = T (2) + 6 = 17 + 6 = 23.

Because T (n) = T (n− 1) + 6, it would be reasonable to assume that the closed form
of the recurrence is of the form 6n+ C for some constant C. Because T (0) = 5, we
find that the closed form expression is therefore T (n) = 6n+ 5 for all integers n ≥ 5,
assuming that the guess is correct.

When a guessed solution is correct, this can often be proven by induction.

Example 5.3 (Equivalence of Closed Form Expression)

Given that T is the running time function of fibPair as described in the solution
of Example 5.1, then T (n) = 6n+ 5 for every non-negative integer n.

Proof. We will prove the claim using the standard form of mathematical induction on
n. In the base case, consider when n = 0. Then T (0) = 5 since n = 0. But this is
6(0) + 5 = 5, as required. Now, let k be an integer such that k ≥ 0 and suppose that
T (k) = 6k + 5. We will now show that the claim holds for the case k + 1. That is,
T (k + 1) = 6(k + 1) + 5 = 6k + 11. But by definition, T (k + 1) = T (k) + 6. However, by
the inductive hypothesis, T (k) = 6k+ 5. Thus, T (k+ 1) = (6k+ 5) + 6 = 6(k+ 1) + 5 as
to be shown. QED.

18

David Ng Design and Analysis of Algorithms I

§5.2 Storage Space - Recursion

When computing the amount of storage that is used by a recursive algorithm, one must
include storage needed for all of the recursive calls that have been made in this algorithm,
including those that have started but have not yet finished. This includes space needed
to remember the value of the input and all local variables, as well as the location in the
source code for the program where the execution of a statement is in progress (because it
included another recursive application of the algorithm). The number of these calls that
are in progress is extremely important too. To illustrate these points, we will consider
the fib algorithm on input n = 3.

Example 5.4 (Storage Space for fib)

Recall that we had produced a recursion tree for this execution of fib for n = 3.
Consider the execution of n = 0, which has been called by n = 2, which in turn
was called by n = 3. These are exactly the calls that are currently in progress. The
executions for n = 3 and n = 2 are currently waiting for n = 0 to finish. Therefore,
we would need to store all information required at all of these recursive calls.

Here, the “execution of a recursion tree” refers to the nodes of a recursion tree. The
recursion depth of an execution of a recursive algorithm is the number of other recursive
applications that have been started and are still in progress. This is visually the same as
the number of edges on the path from the node to the top of the tree. In the previous
example, the execution for n = 0 has a recursion depth of 2. The recursion depth of
an algorithm on a given input (that satisfies the precondition) is the maximum of the
recursion depths of all executions. This is equivalent to the maximum number of edges
on a path from any node to the top in that recursion tree. In the previous example, the
recursion depth of the algorithm is equal to 2.

Now, let us consider the following two functions.

1. R(n) is the recursion depth of the algorithm fib on input n for any non-negative
input n.

2. S(n) is the maximal amount of storage space used by fib during its execution on
input n.

The recursion trees for executions of fib on various inputs will be used to discover
recurrences for these functions.

19

David Ng Design and Analysis of Algorithms I

Example 5.5 (Storage Space for fib)

In the case that n = 0, the recursion tree has no recursive call. Thus, R(0) = 0.
During execution of this, the only variable stored is n, so S(0) = 1. Note that we do
not count space for program counters or constants.

For n = 1, the recursion tree also has no recursive call, so R(1) = 0. The only
variable stored is also n, so S(1) = 1.

In the case that n ≥ 2, the algorithm calls itself twice with inputs n − 2 and
n − 1. The recursion depth in this case is just one more than the maximum
of the recursive depth of its left and right subtrees, so it is therefore R(n) =
1 + max (R(n− 2), R(n− 1)). At this point, we do not yet know that the function
is nondecreasing, so we leave this expression as it is for now

R(n) =

0 if n = 0

0 if n = 1

1 + max (R(n− 2), R(n− 1)) if n ≥ 2

Now, recall that there are four stages of execution for n ≥ 2. Namely, computation
before fib(n-2), recursive call of fib(n-2), recursive call of fib(n-1),and the
computation after fib(n-1). In the first stage, only n is stored, so this is a storage
cost of 1. In the second stage, n is still stored along with the maximum storage
requirements of the recursive call S(n− 2). Thus, the maximum storage required for
the second stage is S(n− 2) + 1. In the third stage, input n and the value returned
by fib(n-2) is stored, along with the maximum requirements of the recursive call
S(n− 1). Thus, the maximum storage required for the third stage is S(n− 1) + 2. In
the fourth stage, we need a storage space of 3 for n, fib(n-2), and fib(n-1). The
maximum storage required is simply the maximum of all four cases. Considering
previous results, we find that

S(n) =

1 if n = 0

1 if n = 1

max(S(n− 2) + 1, S(n− 1) + 2, 3) if n ≥ 2

Remark 5.6. It can be shown by induction that the closed form of the recursion depth
is R(n) = n− 1 for all n ≥ 1, and the closed form for the storage space is S(n) = 2n− 1
for all n ≥ 1.

§6 September 28, 2017

§6.1 Asymptotic Notation

Asymptotic notation provides information about the relative rates of growth of a pair of
functions of a single integer or real variable. It ignores other details such as behaviour on
small inputs, multiplicative constants, and lower order terms (which can be implementa-
tion or platform dependent). This permits classification of algorithms into classes such
as linear, quadratic, polynomial, exponential, etc. Asymptotic notation is also useful for
obtaining bounds on running times of algorithms.

Consider a total or partial function f : N→ N or f : R→ R. For f : N→ N, we say
that f is asymptotically positive (eventually positive) if there exists a constant c such
that when f(n) is defined and f(n) > 0 for all n ∈ N, then n ≥ c. The real number case

20

David Ng Design and Analysis of Algorithms I

is identical in definition. In other words, this simply means that the function is positive
from some point onwards.

§6.2 Big-Oh Notation

Suppose that f, g : N → N or f, g : R → R, and that f and g are both asymptotically
positive. If there exists constants c > 0 and N0 ≥ 0 such that

f(n) ≤ c · g(n)

for all n in the domain of f such that n ≥ N0, then we say that f ∈ O(g). This means that
the rate of growth of f is at most g to a multiplicative factor. For example, 4n+3 ∈ O(n)
since the definition is satisfied for c = 5 and N0 = 3. This is sometimes written as
f = O(g) (even though the definition effectively defines an entire set of functions f that
are all in the set O(g)).

Proposition 6.1

4x2 + 2 ∈ O
(
x2
)
.

Proof. By the definition of O
(
x2
)
, it suffices to show that there exists constants c > 0

and N0 ≥ 0 such that 4x2 + 2 ≤ cx2 for all x ∈ R such that x ≥ N0.
Let c = 5 and N0 = 2. Now let x ∈ R such that x ≥ N0. Then 4x2 +2 ≤ 4x2 +x2 = 5x2

because 2 ≤ 4 ≤ x2 whenever x ≥ 2. Since x was arbitrarily chosen, it follows that
4x2 + 2 ≤ 5x2 = cx2 for all x ∈ R where x ≥ N0. Because our choices of constants were
such that c > 0 and N0 ≥ 0, this establishes the claim.

Alternatively, we can invoke the following theorem to prove the previous proposi-
tion.

Theorem 6.2 (Big-Oh Limit Test)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. If the limit

lim
x→∞

f(x)

g(x)

exists and is equal to a real constant C (that is not ∞), then f ∈ O(g).

Remark 6.3. The previous theorem provides a sufficient condition to show that f ∈ O(g),
but it is not a necessary condition. It may be possible that f ∈ O(g) even though the limit
above does not exist and the theorem cannot be applied. We can also apply l’Hôpital’s
Rule when applying the limit in cases when the terms do not cancel easily.

§6.3 Big-Omega Notation

Suppose that f, g : N → N or f, g : R → R, and that f and g are both asymptotically
positive. If there exists constants c > 0 and N0 ≥ 0 such that

f(n) ≥ c · g(n)

for all n in the domain of f such that n ≥ N0, then we say that f ∈ Ω(g). This means that
the rate of growth of f is at least g to a multiplicative factor. For example, 4n+3 ∈ Ω(n)
since the definition is satisfied for c = N0 = 1.

21

David Ng Design and Analysis of Algorithms I

Theorem 6.4 (Big-Omega Limit Test)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. If the limit

lim
x→∞

f(x)

g(x)

exists and is greater than zero (either resulting in a constant or ∞), then f ∈ Ω(g).

Once again, this only provides a sufficient condition, as there are some cases when the
above limit does not exist and so the theorem cannot be invoked. However, we can apply
another theorem to prove that f ∈ Ω(g).

Theorem 6.5 (Transpose Symmetry of O and Ω)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. It follows that f ∈ O(g) ⇐⇒ g ∈ Ω(f). The proof follows directly from
the definitions, and is left to the reader as an exercise.

§6.4 Big-Theta Notation

Suppose that f, g : N → N or f, g : R → R, and that f and g are both asymptotically
positive. If there exists constants cL, cU > 0 and N0 ≥ 0 such that

cL · g(n) ≤ f(n) ≤ cU · g(n)

for all n in the domain of f such that n ≥ N0, then we say that f ∈ Θ(g). This means that
the rate of growth of f is the same as g to within a multiplicative factor. For example,
4n+ 3 ∈ Θ(n) since the definition is satisfied for cL = 1, cU = 5, and N0 = 3.

Theorem 6.6 (Equivalence of Big-Theta)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. Therefore, it follows that f ∈ Θ(g) ⇐⇒ f ∈ O(g) and f ∈ Ω(g). The
proof follows directly from the definition.

§6.5 Little-Oh Notation

Suppose that f, g : N → N or f, g : R → R, and that f and g are both asymptotically
positive. If for all constants c > 0 there is a constant N0 ≥ 0 such that

f(n) ≤ c · g(n)

for all n in the domain of f such that n ≥ N0, then we say that f ∈ o(g). This means
that the rate of growth of f is less than g to any multiplicative factor.

Proposition 6.7

x ∈ o
(
x2
)

22

David Ng Design and Analysis of Algorithms I

Proof. It follows from the definition of o
(
x2
)

that it is necessary and sufficient to prove
that for every constant c > 0, there is a constant N0 ≥ 0, so that x ≤ c · x2 for all x ∈ R
where x ≥ N0.

Now, suppose c is a real constant greater than 0. Now, let N0 = 1/c. Clearly, this is a
real value greater than or equal to 0, as required. For all x ≥ N0 = 1/c, then it follows
that cx ≥ cN0 = 1. Thus, the following can be shown.

x = 1 · x
= cN0 · x
≤ cx · x = cx2.

Thus, we have shown by definition that x ∈ o
(
x2
)
.

Alternatively, we can invoke the following theorem.

Theorem 6.8 (Little-Oh Limit Test)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. If the limit

lim
x→∞

f(x)

g(x)
= 0,

then f ∈ o(g).

Remark 6.9. The converse of the previous theorem is also true, so this is a necessary
and sufficient condition. Additionally, unlike the synonymous theorems for O and Ω, this
limit test can always be used to prove f ∈ o(g). Note that a proof for f ∈ O(g) cannot
be converted to a proof of f ∈ o(g) simply by converting the argument from ≤ to <.

§6.6 Little-Omega Notation

Suppose that f, g : N → N or f, g : R → R, and that f and g are both asymptotically
positive. If for all constants c > 0 there is a constant N0 ≥ 0 such that

f(n) ≥ c · g(n)

for all n in the domain of f such that n ≥ N0, then we say that f ∈ ω(g). This means
that the rate of growth of f is greater than g to any multiplicative factor. To prove
that f ∈ ω(g), we follow the same structure as for Little-Oh, but reverse the inequality
to ≥ instead of ≤. Alternatively, we can invoke the following theorems.

Theorem 6.10 (Little-Omega Limit Test)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. If the limit

lim
x→∞

f(x)

g(x)
=∞,

then f ∈ ω(g). This limit test can always be used to show that f ∈ ω(g)

23

David Ng Design and Analysis of Algorithms I

Theorem 6.11 (Transpose Symmetry of o and ω)

Suppose that f, g : N→ N or f, g : R→ R, and that f and g are both asymptotically
positive. It follows that f ∈ o(g) ⇐⇒ g ∈ ω(f). The proof follows directly from
the definitions.

§6.7 Standard Functions

A polynomial function with degree d ∈ N is a function

p(n) = adn
d + ad−1n

d−1 + ...+ a1n+ a0,

where ad, ad−1, ..., a1, a0 ∈ R and ad 6= 0. If ad > 0, then p(n) ∈ Θ
(
nd
)
. If p(n) ∈ o (ne)

for all e ∈ R where e > d, and p(n) ∈ ω
(
nf
)

for all f ∈ R where f < d.
An exponential function of n is a function

e(n) = an,

where a ∈ R such that a > 0. If a > 1, then e(n) ∈ ω(p(n)) for every polynomial function
p, irrespective of the degree of p. If a = 1, then e(n) = 1, so e(n) ∈ Θ(1). If a < 1, then
e(n) ∈ o(1).

Furthermore, suppose that a, b ∈ R, a, b > 0, ea(n) = an, and eb(n) = bn. Then, we
can draw the following conclusions. If a > b, then ea(n) ∈ ω(eb(n)). If a = b, then
ea(n) ∈ Θ(eb(n)). If a < b, then ea(n) ∈ o(eb(n)).

A logarithmic function is a function

l(n) = loga(n),

where a ∈ R such that a > 1. If a, b ∈ R such that a > 1, b > 1, la(n) = loga(n), and
lb(n) = logb(n), then la(n) ∈ Θ(lb(n)). If a ∈ R such that a > 1, la(n) = loga(n), and p
is a polynomial function with degree d ≥ 1 whose leading coefficient is positive, then
la(n) ∈ o(p(n)).

§7 October 3, 2017

§7.1 Divide and Conquer - Sorting

The next stage of this course will introduce various kinds of algorithms and design
processes that allow one to design such algorithms of their own. We will henceforth be
analyzing the worst case running time of algorithms as a function of the size of input.

Divide and Conquer algorithms are those that solve a nontrivial instance of a given
problem by

1. Using the given instance to form one or more smaller instances of the same problem.

2. Solving these smaller instances using a recursive application of the same algorithm.

3. Using the solutions for the smaller instances to produce a solution for the original.

The trivial instances of the problem are just solved directly without any recursive
applications of the algorithm. Most of the time, the algorithm has three stages in which
the above steps are carried out. In this case, all of the recursive applications can be
performed in parallel. For instance, if steps 1 and 3 can be parallelized, then the algorithm
is well suited for parallel computation.

24

David Ng Design and Analysis of Algorithms I

Example 7.1 (Sorting Problem)

Consider the sorting problem with the precondition that an integer array A with
some positive length n is given as input. The postcondition is that an integer
array Â with the same positive length n is returned as output. Â stores the values
A[0], A[1], ..., A[n−1], but now listed in nondecreasing order. That is, Â[i] ≤ Â[i+ 1]
for every integer 0 ≤ i ≤ n−2. Find a divide and conquer algorithm that accomplishes
this.

Solution. Consider the trivial case where n = 1. It suffices to return A itself, since there
is only one element that is therefore in nondecreasing order. Now, consider the case that
n ≥ 2. To understand how we can sort an array of this size, we shall split the array into
two smaller arrays with length dn/2e and bn/2c. Thus, we consider the subproblem of
splitting an array.

The precondition for splitting an array is that an array A with a length n ≥ 2 is given as
input. The postcondition is that an array D, of length two of integer arrays B = D[0] and
C = D[1], is returned. B has length dn/2e such that B[i] = A[i] for all 0 ≤ i ≤ dn/2e− 1.
C has length bn/2c such that C[i] = A[dn/2e+ i] for all 0 ≤ i ≤ bn/2c − 1. It is clear
that this problem is easily solved by initializing B and C to the appropriate sizes, then
running a loop to copy values from A into B and C as necessary. The result is then
stored in D, which is then returned. This can be carried out in linear time with respect
to length n. Suppose that this can be done in the worst case in 3n+ 10 steps, and call
such a method split.

The algorithm will need to recursively sort the arrays D[0] and D[1]. Let E be the
sorted result of D[0] and F be the sorted result of D[1]. Then the entries in E and
F combined are exactly the ones found in the original sequence (albeit possibly in a
different order). We now need to merge these arrays to produce an array Â of length
n = dn/2e+ bn/2c such that each preceding term is less than or equal to the next. Thus,
we consider the subproblem of merging sorted arrays.

The precondition for this is that two integer arrays E and F with positive lengths nE
and nF are provided as input. Note that these arrays must be sorted in nondecreasing
order. The postcondition then, is that a single integer array Â of length nE + nF is
returned. Â must consist of those values found in E and F in nondecreasing order. To
solve this, we first initialize array Â and include pointers to the beginning of E and F .
So long as we have not passed the end of E and F , we add the smaller of the values
pointed to by each pointer to Â, and advance that same pointer. Remaining values are
copied into the output array Â. This is clearly linear with respect to nE + nF . Let us
assume that this can be done in at most 5(nE + nF) + 7 steps, and call such a method
merge.

We now have an algorithm that can efficiently sort. In the case that n = 1, then we
simply return the original array. When n ≥ 2, we first call split on the array, then call
the function itself on inputs D[0] and D[1]. Finally, we call merge on the results returned
from calling the function on D[0] and D[1].

Note that the length n of the input array is a bound function for this mergeSort

algorithm. If one assumes (or proves) the correctness of the split and merge methods,
then it can be shown that the mergeSort algorithm correctly solves the Sorting Problem
by strong induction on n.

integer[] mergeSort (integer[] A)

{

if (A.length == 1)

25

David Ng Design and Analysis of Algorithms I

{

integer[] Ahat = new Integer[1]

Ahat[0] = A[0]

return Ahat

}

else

{

(integer[])[] D = split(A)

integer[] E = mergeSort(D[0])

integer[] F = mergeSort(D[1])

return merge(E, F)

}

}

�

Example 7.2 (Running Time of mergeSort)

Determine the running time of the mergeSort algorithm.

Solution. Let Tms(n), Tm(n), and Ts(n) be the number of steps of the mergeSort, merge,
and split algorithms in the worst case respectively given that their preconditions are
satisfied. It is clear from inspection that

Tms(n) ≤

{
4 if n = 1,

Tms(dn/2e) + Tms(bn/2c) + Tm(n) + Ts(n) + 5 if n ≥ 2.

However, we noted before that Ts(n) ≤ 3n+ 10 and Tm(n) ≤ 5n+ 7. Thus,

Tms(n) ≤

{
4 if n = 1,

Tms(dn/2e) + Tms(bn/2c) + 8n+ 22 if n ≥ 2.

It can be shown by induction on n that this is equal to

Tms(n) ≤ 21n dlog2 ne+ 4,

where n is any integer ≥ 1. Thus, the worst case running time of mergeSort is O(n log2 n).
�

The mergeSort algorithm was invented by John von Neumann in 1945. It was the
first known sorting algorithm that could be used to sort an array with length n using
Θ(n log n) steps. It has been proved that there is no comparison-based sorting algorithm
that is asymptotically faster.

§8 October 5, 2017

§8.1 Divide and Conquer - Integer Multiplication

For many computational problems involving integers, it is sufficient to consider integers
that are reasonably small. These values can all be accurately represented using int

or long data types. On the other hand, applications such as public key cryptography
require much larger integers. Thus, libraries that support large integers are available for
multiple programming languages.

A fixed-base representation is the most commonly used representation of large integers:

26

David Ng Design and Analysis of Algorithms I

• The base is an integer constant that is greater than or equal to two.

• The digit is a data type that can be used to represent any integer i such that
0 ≤ i ≤ base. Indeed, it will be said that i is a digit if i is an integer in this range.

The result is that every non-negative integer α has a unique representation of the form

α =
n∑
i=0

ai · basei,

where 0 ≤ a0, a1, ..., an. In other words, these are the string of digits that comprise the
number when multiplied by their respective power of the base.

Remark 8.1. When α = 0, then it follows that n = 0 and a0 = 0. We say that the
representation has length 0 in this case. On the other hand, if α ≥ 1, then n ≥ 0 and
an ≥ 1. We now say that this representation has length n+ 1.

Example 8.2

If base = 10, then we have the common decimal representation, and if base = 2, then
we have binary representation. We also have the base = 8 octal representation, and
the base = 16 hexadecimal representation. The case that is likely most important
for practical computation is the case that a digit is large enough to be stored in a
single word of computer memory without leaving unused storage space. For 64-bit
computer memory, base = 264 = 18, 446, 744, 073, 709, 551, 616.

Large numbers α of the form described will be represented using a BigInteger object.
In particular, if A is a BigInteger representing the integer α, then A.length is the length
of the integer α, and A.digits is an array of digits with length at least one if α = 0 or at
least n+ 1 otherwise. In particular, A.digits[i] = ai for every integer 0 ≤ i ≤ n.

Negative integers can also be represented. Now, A.length and A.digits is used to
represent the absolute value of α. By setting A.sign to be 1 if positive, 0 if zero, or −1 if
negative, we can represent negative integers as well.

We take the unit cost operations on digits to be as follows.

• Initialization: Setting a new digit to a given integer value a such that 0 ≤ a ≤ base.

• Comparison: Given digits a and b, returning −1 when a < b, 0 when a = b, and 1
when a > b.

• Addition: Given digits a and b, returning BigInteger a+ b.

• Subtraction : Given digits a and b, returning BigInteger a− b.

• Multiplication: Given digits a and b, returning BigInteger a · b.

Likewise, we define the unit cost operations on BigInteger A to be as follows.

• Sign: Deciding on the sign of α from inspection of A.sign.

• Length: Deciding on the length of α by inspection of A.length.

• Digits: Determining the digits a0, a1, ..., an by inspection of A.digits.

Now, the linear cost operations on BigInteger A will be considered. Suppose that c0

and c1 are sufficiently large positive constants.

27

David Ng Design and Analysis of Algorithms I

• Initialization: Let n be a positive integer. The operation to create a new BigInteger

A of length n representing 0 costs at most c1n+ c0. A.digits is the array of length
n.

• Addition: Let A and B be BigInteger representing the integer values α and β.
Adding the two and storing them in a BigInteger C costs at most c1n+ c0, where
n is the maximum length of A and B. Subtraction has the same cost.

• Multiplication by Power of base: Let BigInteger A represent the integer α, and
let k be a positive integer. The operation of setting BigInteger B equal to A
times basek is at most c1(n+ k) + c0, where n is the length of A.

• Division with Remainder by a Power of base: Let BigInteger A represent the
integer α, and let k be a positive integer. The operations of setting BigInteger B
to A divided by basek (rounded down), and setting BigInteger C to A modulo
basek are at most c1 max(n, k) + c0, where n is the length of A.

Example 8.3 (Integer Multiplication Problem)

Consider the integer multiplication problem with the precondition that a pair of
BigInteger A and B are given as input. The postcondition is that a BigInteger

C representing the product is returned. Find a divide and conquer algorithm that
accomplishes this.

Solution. We will consider the case for positive integers. Note however that if the signs
of BigInteger can be inspected, then negative integers can be included using only
a constant number of additional steps. The standard multiplication algorithm uses
quadratic time Θ(A.length ·B.length). However, we shall consider Karatsuba’s algorithm,
which is asymptotically faster. This algorithm was named after Anatoly Karatsuba, who
discovered the algorithm in 1960.

We shall now denote n = max(A.length,B.length). Any inputs such that n ≤ 3 will
be considered a trivial instance of the problem. The standard multiplication algorithm
will be used to solve trivial instances. These instances are small enough to assume that
that exists a constant ct such that these instances can be solved in at most ct steps.

Now, suppose that n ≥ 4, and let k = dn/2e. It is clear that k ≤ n − 2. Let
Alow = A mod

(
basek

)
and Ahigh = A div

(
basek

)
. We now have

A = Ahigh · basek +Alow,

where the length of Alow is at most k, since 0 ≤ Alow ≤ basek − 1, and the length of
Ahigh is at most n− k = bn/2c ≤ k. Let Blow and Bhigh be defined in a similar manner.
It follows then that by distributing the terms, the multiplication can be expressed as

C = A ·B = (Ahigh ·Bhigh) base2k + (Ahigh ·Blow +Alow ·Bhigh) basek + (Alow ·Blow)

One might try to develop a divide and conquer algorithm by calculating the four
products composed of Ahigh, Alow, Bhigh, and Blow, but this is actually slower than
standard multiplication. Instead, we let Asum = Ahigh +Alow, where the lengths of Ahigh
and Alow were ≤ n− 2, so the length of Asum is ≤ n− 1. Bsum is similarly defined. The
fast integer multiplication will be performed on the smaller recursive cases of (Alow ·Blow),
(Ahigh ·Bhigh), and (Asum ·Bsum). Realizing that

(Asum ·Bsum)− (Alow ·Blow)− (Ahigh ·Bhigh) = (Ahigh ·Blow +Alow ·Bhigh) ,

we have now obtained an efficient solution for integer multiplication.

28

David Ng Design and Analysis of Algorithms I

BigInteger kMult (BigInteger A, BigInteger B)

{

integer n = max(A.length, B.length)

if (n <= 3)

{

// Trivial instance solution using standard integer multiplication to

return the product of A and B.

}

else

{

k = ceiling(n/2)

BigInteger Alow = A * mod(base ^ k)

BigInteger Ahigh = A * div(base ^ k)

BigInteger Asum = Ahigh + Alow

BigInteger Blow = B * mod(base ^ k)

BigInteger Bhigh = B * div(base ^ k)

BigInteger Bsum = Bhigh + Blow

BigInteger Clow = kMult(Alow, Blow)

BigInteger Chigh = kMult(Ahigh, Bhigh)

BigInteger Csum = kMult(Asum, Bsum)

BigInteger D1 = Chigh * base ^ (2 * k)

BigInteger D2 = Csum - Clow

BigInteger D3 = D2 - Chigh

BigInteger D4 = D3 * base ^ k

BigInteger D5 = D1 + D4

BigInteger C = D5 + Clow

return C

}

}

�

It can be shown that the above algorithm is indeed correct using induction on n, where
n is also the bound function for this recursive algorithm in the case where n ≥ 4. We
now turn our attention to the running time of this algorithm.

Example 8.4 (Running Time of kMult)

Determine the running time of the kMult algorithm.

Solution. It is not trivial to determine the running time from this recurrence algorithm,
since the size of recursive cases are not fixed. Thus, we will make the simplification
that for n ∈ N, we set T (n) to be the number of steps used by the algorithm when
n ≥ max(A.length,B.length) (instead of an equal sign). T (n) is therefore an upper
bound on the number of steps when max(A.length,B.length) = n, so it suffices to find
an upper bound for T (n). It can be seen by its definition that it is a nondecreasing
function of n, so we can use the maximum input size for each recursive instance when
forming a bound on T (n).

Suppose that max(A.length,B.length) ≤ 3. The standard multiplication algorithm is

29

David Ng Design and Analysis of Algorithms I

used. Since A and B are at most a constant length, there is a positive integer d0 such
that the algorithm uses at most d0 steps on A and B.

Now, suppose instead that max(A.length,B.length) ≥ 4. Three smaller instances of
the problem are formed and recursively solved.

1. Alow and Blow are integers in the range of 0 and basek − 1, so their length is at
most k = dn/2e. The number of steps required to solve kMult on this instance is
T (dn/2e).

2. Ahigh and Bhigh are integers in the range of 0 and basen−k−1, with length at most
n− k = bn/2c. This is because A and B are integers in the range of 0 to basen − 1.
The number of steps required to solve kMult on this instance is T (bn/2c).

3. Asum and Bsum are integers in the range of 0 to basek+1 − 1. Each have a length of
at most k + 1 = dn/2e+ 1. The number of steps required to solve kMult on this
instance is T (dn/2e+ 1).

Thus, since T is a nondecreasing function of n, the total number of recursive steps
required to solve all three smaller instances of the problem is therefore

3T (dn/2e+ 1) =

{
3T
(
n+2

2

)
if n is even,

3T
(
n+3

2

)
if n is odd.

All of the other steps require at most a linear number of steps with respect to n. It follows
that there are constants d1 and d2 (related to the constants c1 and c0 when listing the
cost of operations) that result when we sum all of the relevant non-recursive operations
in the algorithm for the case where n ≥ 4. Thus,

T (n) ≤

d0 if n ≤ 3,

3T
(
n+2

2

)
+ d1n+ d2 if n ≥ 4 and n is even,

3T
(
n+3

2

)
+ d1n+ d2 if n ≥ 4 and n is odd.

We would now like to solve the recurrence, but the input values to T on the right of
the recurrence relations above are slightly greater than n/2. This complicates the use of
induction to arrive at a solution for the recurrence. To remedy this, we use a change of
variables to overcome this. Let U(n) = T (n+ 3). Now, we find that if n = 0, then

U(0) = T (3) ≤ d0.

If n ≥ 1 and is odd, then it follows that in T , n+ 3 ≥ 3 and n+ 3 is even. In this case,

U(n) = T (n+ 3) ≤ 3T

(
(n+ 3) + 2

2

)
+ d1(n+ 3) + d2

≤ 3U

(
n− 1

2

)
+ d1n+ 3d1 + d2

If n ≥ 1 and is even, then in T , n+ 3 ≥ 4 and n+ 3 is odd. In this case,

U(n) = T (n+ 3) ≤ 3T

(
(n+ 3) + 3

2

)
+ d1(n+ 3) + d2

≤ 3U
(n

2

)
+ d1n+ 3d1 + d2

30

David Ng Design and Analysis of Algorithms I

Thus, we obtain the recurrence derived with respect to n with positive constants d0,
d1, and d2,

U(n) =

d0 if n = 0,

3d0 + 4d1 + d2 if n = 1,

3U
(
n
2

)
+ d1n+ 3d1 + d2 if n ≥ 2 and n is even,

3U
(
n−1

2

)
+ d1n+ 3d1 + d2 if n ≥ 2 and n is odd.

The additive terms in the recurrence complicate an inductive proof of the solution.
However, once the dominant term of the solution has been discovered, one can subtract
away lower order terms by cancelling things out in a proof by induction. Leaving constants
as unknown values and documenting the conditions on these constants that are required
for a proof can allow one to discover values for these constants that permit a proof to be
completed. It can be shown by induction using the above recurrence relation for U(n)
that for positive constants α = 3d0 + 9d1 + 3d2/2, β = 2d1, and γ = 3d1 + d2/2, it is the
case that U(n) ≤ αnlog2 3 − βn− γ. Because T and U are nondecreasing, it follows that

T (n) = U(n− 3) ≤ U(n) ≤ αnlog2 3 − βn− γ ≤ αnlog2 3 ∈ O
(
nlog2 3

)
.

Because log2 3 < 1.59, we have shown that this algorithm is indeed faster than the
standard algorithm. �

Remark 8.5. Some asymptotically fast algorithms are currently only of theoretical
interest. When an algorithm is discovered, hidden multiplicative constants when Big
Oh notation is used may be so large that the algorithm is not practical. However, as
processor speeds increase and larger instances of problems are considered, this can result
in emerging uses for an algorithm.

§8.2 Master Theorem

Theorem 8.6 (Master Theorem)

Let a, b, and c be constants such that a, c ≥ 1 and b ≥ 1. Let f : N→ N be a total
function, and suppose that T : N→ N such that for all n ∈ N,

T (n) =

{
c if n < b,

aT (bn/bc) + f(n) if n ≥ b.

1. If f(n) ∈ O
(
nlogb(a)−ε) for a positive constant ε, then T (n) ∈ Θ

(
nlogb(a)

)
.

2. If f(n) ∈ Θ
(
nlogb(a)

)
, then T (n) ∈ Θ

(
nlogb(a) log2(n)

)
.

3. If f(n) ∈ Ω
(
nlogb(a)+ε

)
for a positive constant ε, and for every integer 0 ≤

m ≤ n/b it holds that af(m) ≤ df(n) for a positive constant d < 1, then
T (n) ∈ Θ(f(n)).

The Master Theorem can be applied to certain recurrences For instance, the second result
of the theorem can be used to show that mergeSort uses O(n log2 n) steps in the worst
case. Application of the first result can show that the Karatsuba algorithm is bounded
by O

(
nlog2 3

)
.

31

David Ng Design and Analysis of Algorithms I

§9 October 10, 2017

§9.1 Divide and Conquer - Closest Points in a Plane

Consider a pair of points α = (x1, y1) and β = (x2, y2), where x1, x2, y1, y2 ∈ R. The
distance between the two points is given by

√
(x1 − x2)2 + (y1 − y2)2. However, it is

simpler to work with the square of the distance, so that δ(α, β) = (x1 − x2)2 + (y1 − y2)2.
Notice that if α, β, µ and ν are points in the plane, then α and β are closer together than
µ and ν if and only if δ(α, β) < δ(µ, ν). The distance between α and β, and between
µ and ν, is the same if and only if δ(α, β) = δ(µ, ν). Similarly, α and β are farther
apart than µ and ν if and only if δ(α, β) > δ(µ, ν). Thus, if we want to identify a pair
of points in the plane that are closer together than any other pair, then the following
computational problem is of interest.

Example 9.1 (Closest Pair of Points Problem)

Consider the problem of finding the closest pair of points. The precondition is that
α1 = (x1, x2), α2 = (x2, y2), ..., αn = (xn, yn) is given as input, where x1, x2, ..., xn, y1,
y2, ..., yn ∈ R and n ≥ 2. The postcondition is that an ordered pair (i, j) of integers
is returned, where these are the indices of the pair of points αi and αj such that
they are the closest pair. Find a divide and conquer algorithm that accomplishes
this. Similarly, we assume that real arithmetic is exact. Because we assume the
uniform cost criterion, δ(αi, αj) can be computed exactly at unit cost, and one can
also decide whether this is less than, equal to, or greater than another computed
value at unit cost.

Solution. Generally, not all real numbers can be represented exactly. Fixed precision real
arithmetic is generally not exact, as the results of computations are only approximations
of the values that should be computed. For our purposes however, we will assume that the
values are given exactly, since errors arising from this assumption are generally difficult
to detect.

A naive solution would compute δ(αi, αj) for all i, j ∈ N where 1 ≤ i < j,≤ n. By
keeping track of the smallest distance and the pair of integers i and j that accomplish this,
the problem can be solved. Because δ(αi, αj) must be computed and used to initialize
the variable that stores the minimum distance so far, we have

(
n
2

)
choices of i and j. It

follows from
(
n
2

)
= n(n−1)

2 that this algorithm uses Θ
(
n2
)

steps.
While the previous solution is simple, it is also unnecessarily expensive. We now

consider a preprocessing step that allows us to simplify the problem. We first calculate
and store intermediate data that will be useful later in the algorithm.

• An array Px of ordered pairs of points and integers of length n, storing (α1, 1), (α2, 2),
..., (αn, n). This is simply reordered so that they are listed by non-decreasing order
of x coordinates. This is useful, as the problem becomes simplified if one can assume
that x1,≤ x2 ≤ ... ≤ xn. This is because it is much easier to form smaller instances
of the problem from a nontrivial instance in a useful way using this simplification.

This constraint is satisfied if we apply an algorithm to solve this problem when the
original inputs are reordered. However, the output that is returned must now be
adjusted as well, in order to reflect the fact that the input points were reordered.
Therefore, it will be assumed that inputs are α1 = (x1, x2), α2 = (x2, y2), ..., αn =
(xn, yn), with the additional knowledge that x1 ≤ x2 ≤ ... ≤ xn.

32

David Ng Design and Analysis of Algorithms I

• An array Py of ordered pairs of points and integers of length n storing (α1, 1), (α2, 2),
..., (αn, n). This is simply reordered so that they are listed by non-decreasing order
of y coordinates. This allows us to recover a solution for an originally given
nontrivial instance of the problem from the solutions of smaller instances.

It is clear that the mergeSort algorithm can be used to create arrays Px and Py using
O(n log n) steps for a problem with n points.

We now solve a new version of the problem, such that the precondition now becomes
α1 = (x1, x2), α2 = (x2, y2), ..., αn = (xn, yn) given as input, where x1, x2, ..., xn, y1,
y2, ..., yn ∈ R such that x1 ≤ x2 ≤ ... ≤ xn, and n ≥ 2. Additionally, we also require as
input an array Py of ordered pairs of points and integer storing (α1, 1), (α2, 2), ..., (αn, n)
reordered so that these are listed by nondecreasing y coordinates of the points. The
postcondition is the same as before.

Suppose that any instance of the problem such that n ≤ 3 is considered to be a trivial
instance of the problem. When n = 2, then there is only one pair of points to consider, so
that the values i = 1 and j = 2 are returned. When n = 3, then the only pairs we need
to consider are (α1, α2), (α1, α3), and (α2, α3). Thus, it is possible to solve the trivial
instances of the problem using at most a small positive number of steps. Suppose that
solveTrivial is a method that accesses the inputs for the problem as global data and
reports a solution for this instance of the problem using at most a constant number of
steps whenever n ≤ 3.

In the nontrivial case when n ≥ 4, then we note that 2 ≤ bn/2c ≤ dn/2e ≤ n − 2.
Thus, it is possible to form two smaller instances with sizes bn/2c and dn/2e such that
each input point is in exactly one of these two instances.

• The first instance includes the points βi = ai for all 1 ≤ i ≤ dn/2e.

• The second instance includes the points γi = αdn/2e+i for all 1 ≤ i ≤ bn/2c. Note
also that the entires β and γ are sorted by nondecreasing order of x, since the
entries of α are.

• The first instance includes the array Qy with length dn/2e that stores that values
(β1, 1), (β2, 2), ..., (βdn/2e, dn/2e) reordered in nondecreasing order of y coordinates.

• The second instance includes the array Ry with length bn/2c that stores that values
(γ1, 1), (γ2, 2), ..., (γbn/2c, bn/2c) reordered in nondecreasing order of y coordinates.

It is clear that the points β and γ can be formed using a pair of simple while loops, and
a small number of extra steps, using Θ(n) steps in total. The arrays Qy and Ry can be
formed from Py using Θ(n) steps as well, by examining the entry Py[i] for 0 ≤ i < n and
deciding which array Qy or Ry it should go into. Suppose there is a method split that
receives Py as input and produces the ordered pair (Qy, Ry) as output using Θ(n) steps.

Now, suppose that (i1, j1) is the recursively derived solution for β, and that (i2, j2) is
the recursively derived solution for γ. These indicate the closest pair of points in the
lower and upper half of the points organized by x respectively. One can then compute
δ(αi1 , αj1) and δ

(
αdn/2e+i2 , αdn/2e+j2

)
to obtain a pair of integers 1 ≤ i, j ≤ n such that

δ(αi, αj) ≤ δ(αk, αl) for all integers k and l either both in the lower instance, or both in
the upper instance. This requires only a constant number of steps. However, there are
too many pairs of points with one in the lower instance and one in the higher instance for
all of these to be checked efficiently. Thus, the solution cannot be recovered in this way.

33

David Ng Design and Analysis of Algorithms I

Lemma 9.2

Recall that αdn/2e =
(
xdn/2e, ydn/2e

)
for xdn/2e, ydn/2e ∈ R. Let mid = xdn/2e. If

1 ≤ i ≤ n and ai = (xi, yi) such that

�

Remark 9.3. This problem was considered by Michael Ian Shamos and Dan Hoey in
the 1970s as part of early work in the then emerging field of computational geometry.
The problem has applications in multiple areas, including computer graphics, computer
vision, geographic information systems, and molecular modeling.

§10 October 12, 2017

§10.1 Divide and Conquer - Median Finding and Selection

Recall that the quickSort algorithm works best when the pivot element chosen at the
beginning is close to the middle of the values in the array that is to be sorted.

The lower median of a sequence a1, a2, ..., an of n distinct positive integers is the integer
b such that b is among the entries of the sequence, and exactly bn/2c elements of the
sequence are less than or equal to b. This also means that exactly dn/2e elements of the
sequence are greater than b. The precondition of the median finding problem is that an
array of length n storing n distinct integers is given as input. The postcondition is that
the median of the sequence of values stored is returned. To solve this, we will consider a
generalization of the median finding problem.

Example 10.1 (Selection Problem)

The precondition is that an array of length n storing a sequence a1, a2, ..., an of
distinct integers, and an integer k such that 1 ≤ k ≤ n are given as input. The
postcondition is that the integer b = ai for some integer 1 ≤ i ≤ n is returned. It
must be the case that exactly k elements of the sequence a1, a2, ..., an are less than
or equal to b. Solve the selection problem using a divide and conquer algorithm.

Solution. The selection problem is a generalization of the median finding problem. One
could solve the selection problem by using mergeSort to sort the input array, and then
return the element at position k − 1 of the resulting array. This would clearly require
Θ(n log2 n) operations in the worst case. However, we can actually accomplish this in
linear time.

We will consider any instance of the problem with n < 120 to be trivial. Each of
these can be solved using at most a constant number of steps using the mergeSort

algorithm. Now, suppose that n ≥ 120. Let h = dn/5e and split the input sequence into
h subsequences so that each have a length of at most five. This means that for sequence
i where 1 ≤ i ≤ h − 1, there are five input values. Consequently, the last sequence h
contains between one and five values.

Let bi for 1 ≤ i ≤ h be the median of subsequence i. Each of these can be computed
using the mergeSort algorithm since they are only of length 5. Thus, all of these values
can be computed in O(n) steps. We can now produce an algorithm form1 that takes the
original input array, and returns as output at array B of length h that stores the values
b1, b2, ..., bh using Θ(n) steps in the worst case.

34

David Ng Design and Analysis of Algorithms I

The first smaller instance of the selection problem that should be recursively solved
includes the above array B along with the integer input bh/2c, so that the median of the
sequence b1, b2, ..., bh is returned. That is, we find the median of the medians obtained
from each of the h subsequences, and call this value c. By definition of lower median,
there are bh/2c elements of b1, b2, ..., bn that are less than or equal to c.

For 1 ≤ i ≤ h, exactly two elements in that subsequence i are greater than bi, and
exactly two elements are less than bi. Recall that h = dn/5e < n/5 + 1 < n. Thus, we
note that

c >

⌊
h

2

⌋
− 1 ≥

⌊
(n/5)

2

⌋
− 1 ≥ n

10
− 2

elements of the b1, b2, ..., bh. For each value of bi that c is greater than, this corresponds
to three values of a that c is greater than. Thus, c is greater than at least 3(n/10− 2) =
3n/10−6 elements of a1, a2, ..., an. Through similar reasoning, c is also less than 3n/10−6
elements of a1, a2, ..., an.

Let l denote the number of values in the sequence a1, a2, ..., an that are less than c. It
follows that 3n/10− 6 ≤ l ≤ 7n/10 + 5. Using c, the following can be computed using
Θ(n) steps.

• The value l defined above.

• An array CL, with length l ≤ 7n/10 + 5 including all the entries in the sequence
a1, a2, ..., an that are less than c.

• An array CU , with length n − l − 1 ≤ 7n/10 + 5 including all the entries in the
sequence a1, a2, ..., an that are greater than c.

Note that if n ≥ 120, then 7n/10 + 5 < n. We shall assume that there is an algorithm
form2 that returns an ordered pair of the above arrays CL and CU when given the input
array and c as input in Θ(n) operations in the worst case.

Now, when l ≥ k, then the second instance of the problem that should be recursively
solved should include the array CL of length l along with the integer k. When l ≤ k − 2,
then the second instance of the problem that should be recursively solved should include
the array CU with length n− l − 1 along with the integer k − l − 1. Lastly, in the case
that l = k?1, then the value c should be returned as output.

integer select (integer[] A, integer k)

{

if (A.length < 120)

{

integer[] B = mergeSort(A)

return B[k - 1]

}

else

{

integer h = ceiling(n / 5)

integer[] B = form1(A)

integer c = select(B, floor(h / 2))

(integer[])[] (CL, CU) = form2(A, c)

integer l = CL.length

if (l >= k)

{

return select(CL, k)

35

David Ng Design and Analysis of Algorithms I

}

else if (l <= k - 2)

{

return select(CU, k - l - 1)

}

else

{

return c

}

}

}

�

Remark 10.2. Note that the recursive calls of select are well formed instances of the
selection problem that call on inputs smaller than those of the original. It can be shown
by strong induction on n that this algorithm is correct, using a base case of 1 ≤ n ≤ 39.
The proof is left to the reader.

Example 10.3 (Running Time of select)

Determine the running time of the select algorithm.

Solution. It can be established that there exists a positive constant c1 such that this
algorithm uses at most 20c1n steps when it is executed with 1 ≤ n ≤ 119. Additionally,
when the algorithm is executed for n ≥ 120, the number of steps taken is at most the
sum of c1n and the number of steps used by any recursive applications.

For n ≥ 1, let T (n) be maximum number of steps used by this algorithm when the
problem’s precondition is satisfied and the input includes an array with length at most n.
T (n) is then a nondecreasing function, and it follows from the choice of c1 and the sizes
of subproblems that must be formed that

T (n) ≤

{
20c1n if 1 ≤ n ≤ 119,

T
(⌈

n
5

⌉)
+ T

(⌊
7n
10 + 5

⌋)
+ c1n if n ≥ 120.

Note additionally that if n ≥ 120, then the sum of the sizes of inputs for smaller
instances that are recursively solved is at most⌈n

5

⌉
+

⌊
7n

10
+ 5

⌋
≤ n

5
+ 1 +

7n

10
+ 5

≤ 9n

10
+ 6

≤ 9n

10
+

n

20

≤ 19n

20

This can be used to prove by strong induction on n, that T (n) ≤ 20c1n for every positive
integer n, with the base case being 1 ≤ n ≤ 119.

�

Remark 10.4. If this algorithm is used to select the pivot element as the median when
implementing the quickSort algorithm, then the resulting algorithm uses Θ(nlog2n)

36

David Ng Design and Analysis of Algorithms I

steps to sort an array with length n in the worst case. However, this version is not
significantly better than mergeSort, because of the additional costs arising from the
inclusion of the select algorithm. Because the selection problem is so fundamental, a
worst case linear time algorithm to solve it is still of interest.

§11 October 17, 2017

§11.1 Dynamic Programming

A Dynamic Programming algorithm is an algorithm that is derived from a recursive algo-
rithm that solves the same computational program. However, the dynamic programming
algorithm solves instances from the bottom up, starting with trivial instances. It stores
solutions as it generates them, and looks them up later instead of computing them all
over again.

Recall the fib algorithm. The issue with this algorithm is that it compute the same
values repeatedly. Note that we only need the values Fi where 0 ≤ i ≤ n to be computed
by the recursive algorithm when we want to find Fn+1. These values can be stored in an
array F with length n+ 1 to store Fi for 0 ≤ i ≤ n. If these values are computed and
stored by increasing order of i, then for 2 ≤ i ≤ n, the values of Fi−2 and Fi−1 are already
stored in location i − 2 and i − 1 of the array. So to compute Fi, we simply add the
results of those previous array elements. Thus, after storing F0 and F1 in locations 0 and
1 of the array, a while loop can be used to store Fi in location i of the array for 2 ≤ i ≤ n.
The value of F [n] can then be returned as output. The code for this is presented below.

integer fibDP (integer n)

{

if (n == 0)

{

return 0

}

else if (n == 1)

{

return 1

}

else

{

integer[] F = new integer[n+1]

F[0] = 0

F[1] = 1

integer i = 1

while (i < n)

{

F[i + 1] = F[i - 1] + F[i]

i = i + 1

}

return F[n]

}

}

The proof that fibDP correctly solves the Fibonacci number computation problem is
similar to the proof for fibLoop. That is, the loop invariant now includes information on
n ≥ 2 instead of n ≥ 1, and the case that n = 1 now needs to be treated as a special case

37

David Ng Design and Analysis of Algorithms I

in proofs of partial correctness and termination. Modification of the proof for fibLoop

into a proof for fibDP is left as an exercise. It is also easy to determine the number of
steps used by the algorithm when executed on non-negative integers n,

T (n) =

2 if n = 0,

3 if n = 1,

n+ 2(n− 1) + 7 = 3n+ 5 if n ≥ 2.

One can arrive at a dynamic programming algorithm by following these steps.

1. Design a Divide and Conquer algorithm that solves this computational problem
and prove that the algorithm is correct.

2. Determine which other instances of the same problem must be formed and recursively
solved when the Divide and Conquer algorithm is used to solve the original instance
of the problem. If the number of smaller instances is reasonably small, then this
algorithm may be a good candidate for optimization using Dynamic Programming.

3. Choose a data structure that can store these solutions for smaller problems.

4. Identify an order in which these solutions can be solved so that solutions for smaller
problems have already been solved and stored before they are needed.

5. Trivial cases can be recognized and handled in the same way as divide and conquer
algorithms. For nontrivial cases, the data structure is initialized, and smaller
instances are solved and stored. These solutions are then accessed from the data
structure at a later point, when they are required for computation.

While the time requirements do not change drastically, storage requirements may be
significantly improved by only storing solutions for smaller problems as needed. When
values are not used, they can be erased. Thus, we consider an improved version of the
previous dynamic programming algorithm fibDP.

integer betterFibDP (integer n)

{

if (n == 0)

{

return 0

}

else if (n == 1)

{

return 1

}

else

{

integer oldest = 0

integer middle = 1

integer i = 1

while (i < n)

{

integer youngest = oldest + middle

oldest = middle

middle = youngest

i = i + 1

}

38

David Ng Design and Analysis of Algorithms I

return middle.

}

}

§11.2 Memoization

Memoization is an algorithm design technique that is similar to divide and conquer.
However, it produces recursive algorithms instead of algorithms with while loops. They
work from the top down instead of from the bottom up, and include code that closely
resembles the inefficient divide and conquer algorithm that one starts with. We are
essentially storing each result and every smaller result in an array. If we later invoke the
function on any value less than or equal to the initial value, then we can immediately
return the result stored in the array. If we invoke the function on a larger value, then we
have minimized the number of recursive calls. Memoization allows an algorithm to be
more time efficient the more often it is called, resulting in an eventual overall speed up.

Suppose again that we want to compute the nth Fibonacci number. For fibDP, we
used an array F with length n + 1 to store the values F0, F1, F2, ..., Fn. Suppose that
initializeF is an algorithm that receives n as input and returns an array with length
n + 1 as output so that nothing is initially stored, completing in 3n + 7 steps. Now,
consider the use of this array F as global data such that when it is executed on input
0 ≤ i ≤ n, F [i] is checked. If it is not empty, then the value is returned and execution
halts. Otherwise, code almost identical to fib is used to compute Fi. That is, the
algorithm calls itself recursively, with F [i] being set to Fi immediately before Fi is
returned. The algorithm that does this is presented below.

integer recFib (integer i)

{

if (F[i] != null)

{

return F[i]

}

else if (i == 0)

{

F[i] = 0

return 0

}

else if (i == 1)

{

F[i] = 1

return 1

}

else

{

F[i] = recFib(i - 2) + recFib(i - 1)

return F[i]

}

}

We can now deduce a memoized algorithm that solves the problem. This involves
initializing an array to store computed values.

integer[] memFib (integer n)

39

David Ng Design and Analysis of Algorithms I

{

if (n == 0)

{

return 0

}

else if (n == 1)

{

return 1

}

else

{

integer[] F = initializeF(n)

return recFib(n)

}

}

Example 11.1

Prove that memFib is correct. We make the following claims.

1. First Claim: If i is an integer such that 0 ≤ i ≤ n and the recFib algorithm
is executed for the first time as part of an execution of the memFib algorithm
with input n, then F[i] = null when this execution of the algorithm begins.

2. Second Claim: Suppose that i is an integer such that 0 ≤ i ≤ n and the
recFib algorithm is executed with input i when F[i] is equal to Fi at the
beginning of the execution of the algorithm. This execution of the algorithm will
terminate with Fi returned as output, with the entry in the array unchanged.

3. Third Claim: For every integer i such that 0 ≤ i ≤ n, every execution of
recFib on i ends with Fi as output. Additionally, F[i] is equal to Fi when
the algorithm ends.

4. Fourth Claim: The memFib algorithm is correct.

Solution. To prove that the memFib algorithm is correct, we will proceed by proving the
separate claims made in the example.

1. Proof of the first claim follows directly from inspection of the code. Recall that
initializeF returns an array F with length n + 1 such that F[i] = null for
every integer i such that 0 ≤ i ≤ n. During an execution of the recFib algorithm,
the array F is only modified when F[i] is modified, where i was received as input.
If this is the first time that the algorithm is being executed with input i, then the
value cannot have been changed. It is therefore equal to null as claimed.

2. By inspection of the code, since the array entry is already equal to Fi, then it is
clearly not null. Thus, the test checking that it is not null is true, so the value is
returned. This value is returned without modifying anything in the array.

3. We use strong induction on i and consider the base cases of i = 0 and i = 1. For
the first execution on any input i, we apply the First Claim to conclude that the
test that the element at index i is not null fails. Tracing the code and applying the
inductive hypothesis, we confirm that F[i] is set to be Fi and this is returned for
the cases i = 0, i = 1, and 2 ≤ i ≤ n.

40

David Ng Design and Analysis of Algorithms I

For subsequent executions, we prove the subclaim that if j is an integer j ≥ 2, and
the algorithm is executed with input i at least j times, then the j execution also
halts with Fi returned as output and F[i] equal to Fi when the algorithm ends.
This is proved by induction on j using the Second Claim.

4. By inspection of the code and the Third Claim when the input n is greater than
or equal to n, we have shown that the algorithm is correct.

�

§11.3 Memoization Efficiency

The recursion tree method is useful for bounding the number of steps performed by
recFib when it is executed on n ≥ 2. The recursion tree for n = 5 starts by splitting to
3 and 4. The 3 splits into 1 and 2, and this 2 splits into 0 and 1. The 4 from before splits
into 2 and 3. Note that this 3 no longer splits, since the previous value was memoized
into the array, and can be called subsequently without additional recursive calculations.

One way to count the number of steps executed by recFib is to charge to each node
the number of steps used by the corresponding execution (excluding the cost of recursive
calls). The sum of all these charges will equal the total number of steps used by the
original application of the algorithm.

Example 11.2 (Efficiency of memFib)

Determine the efficiency of memFib on input n = 5. We make the following claims.

1. Fifth Claim: If n ≥ 2, the the recursion tree for an execution of the recFib

algorithm with input n has exactly n− 1 internal nodes. Specifically, we have
one for every execution of n = i where 2 ≤ i ≤ n.

2. Sixth Claim: If n ≥ 2, the recursion tree for an execution of the recFib

algorithm on input n includes at least one node corresponding to each of inputs
0 and 1.

3. Seventh Claim: If n ≥ 2, the recursion tree has n− 2 leaves corresponding
to executions that are not the first on those inputs.

Solution. We will prove the claims above in order to arrive at the efficiency of the
algorithm.

1. First note that there are four internal nodes in the recursion tree. Specifically,
we have one for every i, where 2 ≤ i ≤ 5. It can be shown by induction on n
that every execution on input n eventually includes an execution with input i for
2 ≤ i ≤ n. For all such i, the first such execution corresponds to an internal node
in the tree because it required computation. All later executions with these input
values correspond to leaves in the tree, because the test that F[i] is not null is
passed. Since inputs 0 and 1 are trivial cases, one can see (by inspection of the code)
that all executions of the algorithm with these inputs correspond to leaves instead
of internal nodes. Since there are no other recursive executions, this establishes
the claim. We can see that every execution of an internal node requires five steps.
Thus, for n− 1 internal nodes, this requires 5(n− 1) = 5n− 5 steps.

2. We can also see that for the recursion tree, there are leaves corresponding to the
first executions of the algorithm on inputs 0 and 1. The Fifth Claim implies that

41

David Ng Design and Analysis of Algorithms I

execution includes a first execution of the algorithm with input 2. Thus, one can
see by inspection that this includes recursive applications with inputs 0 and 1, as
required to establish the claim. The first execution with input 0 and 1 require 5
and 4 steps respectively. Thus, first executions of trivial instances require 9 steps
in total.

3. The recursion tree also contains three other leaves corresponding to executions that
are not the first execution (specifically for inputs 1, 2, and 3). It follows by the
Fifth Claim that this recursion tree always has exactly n−1 internal nodes. It can
also be seen by inspection that the recursion tree is always a binary tree such that
every internal node has exactly two children. Thus, it can be shown by induction
on the number of internal nodes, that every binary tree with this property has
exactly one more leaf than it has internal nodes. So for this recursion tree, we have
exactly n leaves. Since two of those correspond to the first executions on 0 and 1,
this leaves n− 2 leaves for executions that are not the first on those inputs, thus
proving the claim. Each of these contribute 2 steps, so we have 2(n− 2) = 2n− 4
steps.

Therefore, the total number of steps required for recFib is (5n− 5) + 9 + (2n− 4) = 7n.
By inspection of memFib, we find that the number of steps used by this algorithm becomes

T (n) =

2 if n = 0,

3 if n = 1,

(3n+ 7) + 4 + (7n) = 10n+ 11 if n ≥ 2.

�

One can arrive at a memoization algorithm by following these steps.

1. Design a Divide and Conquer algorithm that solves this computational problem
and prove that the algorithm is correct.

2. Determine which other instances of the same problem must be formed and recursively
solved when the Divide and Conquer algorithm is used to solve the original instance
of the problem. If the number of smaller instances is reasonably small, then this
algorithm may be a good candidate for optimization using Memoization.

3. Choose a data structure that can store these solutions for smaller problems.

4. Write an algorithm such as initializeF to initialize the data structure using null

or some other value indicating that the corresponding stance of the problem has
not yet been solved. Do this for every entry of the data structure.

5. Write a recursive algorithm such as recFib that receives an instance of the problem
as input and uses the data structure as global data. This algorithm first accesses the
data structure to check whether the input instance of the problem has been solved
already. If it has been solved, then the solution is read from the data structure
and returned as output with no changes made to the data structure. Otherwise,
the process followed by the original Divide and Conquer algorithm is used to solve
the input instance by calling itself recursively. This solution is written to the data
structure immediately before being returned as output.

42

David Ng Design and Analysis of Algorithms I

6. Write a main method such as memFib that solves the trivial instances of the problem,
and solves the nontrivial instances by calling the algorithm of step 4 to initialize
the data structure, and then calling the algorithm of step 5 in order to return the
result.

Proving the correctness and analyzing the running time of the algorithm described at
step 4 will generally be straightforward since this algorithm will often be very simple.
Claims resembling the first, second, and third claims above can generally be stated and
proved to show correctness of the algorithm described in step 5. The first two claims are
likely established through inspection of the code, while the third is likely shown using
the first two claims and modifying a proof of correctness of the original ?Divide and
Conquer? algorithm.

The recursion tree method will often be useful when bounding the running time of the
algorithm described at step 5. If this has been implemented as described above, then:

• There will be only one internal node corresponding to each nontrivial instance of
the problem that must be formed and solved. These corresponding to the first
application of the algorithm on each of these instances.

• There will be only one leaf corresponding to a first attempt to solve each trivial
instance of the problem that must be formed and solved.

• The only other nodes will be leaves corresponding to subsequent attempts to solve
instances of the problem. The number of these can generally be related to the
number of internal nodes. Generally, they can also be bounded by an inspection of
the code (which determines the shape of the recursion tree).

§11.4 Dynamic Programing vs Memoization

The process of designing a dynamic programming algorithm arguably requires more
work than designing a memoized algorithm, since it is necessary to identify an order
in which instances of a problem can be solved. However, it can allow more control,
as storage requirements can be reduced by discarding information once it is no longer
needed. However, the analysis of a memoized algorithm might be more complicated than
that of a dynamic programming algorithm.

§12 October 19, 2017

§12.1 Divide and Conquer - Longest Common Subsequence

The application of dynamic programming and memoization to design efficient algorithms
for a problem of interest in computational biology will now be considered. Consider the
following quote that introduces the problem.

In biological applications, we often want to compare the DNA of two (or
more) different organisms. A strand of DNA consists of a string of molecules
called bases, where the possible bases are adenine, guanine, cytosine, and
thymine.

Representing each of the bases y their initial letters, a strand of DNA can be expressed
as a string over a finite set {A,C,G, T}. For example, the DNA of one organism may be

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA,

43

David Ng Design and Analysis of Algorithms I

while the DNA or another organism may be

S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.

Our goal goal of comparing two stands of DNA is to determine how similar the two
strands are, as some measure of how closely related the two organisms are. Similarity can
be defined in many different ways. For example, we can say that two DNA strands are
similar if one is a substring of the other. In our example, neither S1 nor S2 is a substring
of the other. Alternatively, we could say that two strands are similar if the number of
changes needed to turn one into the other is small. Yet another way to measure the
similarity of strands S1 and S2 is by finding a third strand S3 in which the bases in
S3 appear in both S1 and S2. These bases must appear in the same order, but not
necessarily consecutively. The longer the strand S3, the more similar S1 and S2 are.
In our example, the longest strand S3 = GTCGTCGGAAGCCGGCCGAA. This last
notion of similarity is formalized as the Longest Common Subsequence Problem.

Here, a subsequence is defined as the given sequence with zero or more elements left out.
Formally, a sequence Z = z1, z2, ..., zk is a subsequence of a sequence X = x1, x2, ..., xm if
there are integers i1, i2, ..., ik such that 1 ≤ i1 < i2 < ... < ik ≤ m and zj = xij for every
integer j such that 1 ≤ j ≤ k. The problem of finding the longest common subsequence
of two sequences can then be stated. The precondition is that a pair of finite sequences X
and Y over a finite alphabet Σ are given as input. The postcondition is that a common
subsequence Z of X and Y that is at least as long as any other common subsequence is
returned.

It is useful to compute the length of a longest common subsequence of a given pair of
sequences. Additionally, for a sequence X = x1, x2, ..., xm, we denote Xi to be the prefix
of X with length 0 ≤ i ≤ m such that Xi = x1, x2, ..., xi. It will also be useful to consider
a version of a problem in which sequences X and Y are accessed (but not modified) as
global data, and the lengths of the prefixes of X and Y currently being considered are
given as input.

Example 12.1 (Length of Longest Common Subsequence)

The precondition is that a pair of sequences X and Y over a finite alphabet Σ, each
with lengths m and n respectively, are accessed (but not modified) as global data. A
pair of integers i and j such that 0 ≤ i ≤ m and 0 ≤ j ≤ n are given as input. The
postcondition is that the length c[i, j] of a longest common subsequence of Xi and
Yj is returned as output. That is, the longest common subsequence in the specified
prefixes of X and Y are returned.

Solution. [Divide and Conquer] Instances of the problem where i = 0 or j = 0 are
considered trivial since either Xi or Yj is an empty sequence. In this case, the only common
subsequence is the empty sequence, so c[i, j] = 0. Suppose now that X = x1, x2, ..., xm
and Y = y1, y2, ..., yn. Suppose also that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

In the case that xi = yj , then every longest common subsequence of Xi and Yj must
end with xi, because every other common subsequence of Xi and Yj can be extended by
appending xi onto the end of it. Furthermore, it is clear that the sequence obtained by
appending xi onto the end of any longest common subsequence of Xi − 1 and Yj − 1 is a
longest common subsequence of Xi and Yj . Thus, if i ≥ 1, j ≥ 1, and xi = yj , then

c [i, j] = c[i− 1, j − 1] + 1.

In the case that xi 6= yj , then any longest common subsequence of Xi and Yj that ends
with xi cannot end with yj . So it is also the longest common subsequence of Xi with

44

David Ng Design and Analysis of Algorithms I

Yj−1. Alternatively, any longest common subsequence that does not end with xi must
also be the longest common subsequence of Xi−1 with Yj . Therefore, if i ≥ 1, j ≥ 1, and
xi 6= yj , then

c[i, j] = max (c[i, j − 1], c[i− 1, j]) .

This allows us to deduce a recurrence relation to obtain c[i, j],

c[i, j] =

0 if i = 0 or j = 0,

c[i− 1, j − 1] + 1 if i ≥ 1, j ≥ 1, and xi = yj ,

max(c[i, j − 1], c[i− 1, j]) if i ≥ 1, j ≥ 1, and xi 6= yj .

The following is the corresponding divide and conquer algorithm based on this recurrence
relationship.

integer maxSeqLength (integer i, integer j)

{

if ((i == 0) or (j == 0))

{

return 0

}

else if (x_i == y_j)j

{

return maxSeqLength(i - 1, j - 1) + 1

}

else

{

return max(maxSeqLength(i, j - 1), maxSeqLength(i - 1, j))

}

}

�

Correctness can be proven by strong induction on i+ j, where the base cases are when
the sum equals 0 and 1. While it is not necessary to bound the running time of this
algorithm in order to use it to design a dynamic programming or memoization algorithm,
it can be shown that this algorithm requires time that is exponential in i+ j in at least
the case where i = j and the sequences X and Y have no symbols in common.

§12.2 Dynamic Programming - Longest Common Subsequence

We will now solve the problem by designing a dynamic programming solution. This
begins by considering the divide and conquer solution provided previously.

Solution. [Dynamic Programming] When called with inputs i and j, some of the instances
including pairs of inputs s and t such that 0 ≤ s ≤ i and 0 ≤ t ≤ j are formed and
solved. It is difficult to see which of these are needed and which are not. However, this
is not of a huge concern, as there are (i + 1)(j + 1) such instances. Thus, there are
(m+ 1)(n+ 1) ∈ Θ(mn) of these smaller instances when i = m and j = n. Therefore, a
two dimensional array of integers C with i+ 1 rows and j + 1 columns is used to store
the solutions for the smaller instances. That is, for 0 ≤ s ≤ i and 0 ≤ t ≤ j, the value of
c[s, t] will be stored in C[s, t].

We now note that several different solution orders are possible.

• The entries can be filled by non-decreasing order of row. Entries in the same row
should be filled by increasing column.

45

David Ng Design and Analysis of Algorithms I

• The entries can be filled by non-decreasing order of column. Entries in the same
column should be filled by increasing row.

• The entries can be filled by non-decreasing value of s + t, marching down each
diagonal.

These options are almost equally efficient. Filling by the first option is likely the simplest,
so this is the one for which we design the algorithm for.

integer lcsLengthDP(integer i, integer j)

{

if ((i == 0) or (j == 0)

{

return 0

}

else

{

(integer[])[] C = new (integer[i + 1])[j + 1]

integer t = 0

while (t <= j)

{

C[0, t] = 0

t = t + 1

}

integer s = 1

while (s <= i)

{

C[s, 0] = 0

t = 1

while (t <= j)

{

if (xs == yt)

{

C[s, t] = C[s - 1, t - 1] + 1

}

else

{

C[s, t] = max(C[s, t - 1], C[s - 1, t])

}

t = t + 1

}

s = s + 1

}

return C[i, j]

}

}

�

Correctness of this algorithm can only be established after considering the nested loop
in the algorithm. We will need to make use of the Third Loop Theorem. There are two
steps when i = 0 and j = 0. When i ≥ 1 and jgeq1, it can be shown that there are at
most 4ij + 9i+ 3j + 10 ∈ Θ(ij) steps. Thus, if this algorithm is being used to compute
the length of the longest common subsequence of X and Y , then i = m and j = n, so
there are at most O(mn) steps used in the worst case.

46

David Ng Design and Analysis of Algorithms I

§12.3 Memoization - Longest Common Subsequence

We will now solve the problem by designing a memoization solution. This begins by
considering the divide and conquer solution provided previously. Recall that the first few
steps are the same as for designing a dynamic programming solution. Thus, we start by
considering the other steps.

Solution. [Memoization] We need a subroutine that initializes the array C when i ≥ 1
and j ≥ 1. Suppose that a subroutine initializeC does exactly this, setting each entry
of the array to null using at most 3ij + 4i+ 4 ∈ Θ(ij) steps on inputs i and j. We can
now arrive at a recursive algorithm that uses the array C as global data and fills it in,
while solving the desired problem. It is assumed that the inputs are integers s and t such
that 0 ≤ s ≤ i and 0 ≤ t ≤ j.

integer recLCSLength(integer s, integer t)

{

if (C[s, t] != null)

{

return C[s, t]

}

else if ((s == 0) or (t == 0))

{

C[s, t] = 0

return C[s, t]

}

else if (xs = yt)

{

C[s, t] = recLCSLength(s - 1, t - 1) + 1

return C[s, t]

}

else

{

C[s, t] = max(recLCSLength(s, t - 1), recLCSLength(s - 1, t))

return C[s, t]

}

}

The main method that uses this subroutine to solve the problem is given below. If
called on inputs i = m and j = n, then this returns the length of the longest common
subsequence of the sequences X and Y .

integer memLCSLength(integer i, integer j)

{

if ((i == 0) or (j == 0))

{

return 0

}

else

{

(integer[])[] C = initializeC[i, j]

return recLCSLength[i, j]

}

}

�

47

David Ng Design and Analysis of Algorithms I

Example 12.2

Prove the correctness of the memLCSLength algorithm. We make the following claims.

1. If s and t are integers such that 0 ≤ s ≤ i and 0 ≤ t ≤ j, and the recLCSLength
algorithm is being executed for the first time as part of an execution of the
memLCSLength algorithm with inputs i and j such that 1 ≤ i ≤ m and
1 ≤ j ≤ n, then C[s, t] is null when this execution of the recLCSLength

algorithm begins.

2. Suppose that s and t are integers such that 0 ≤ s ≤ i and 0 ≤ t ≤ j, where
0 ≤ i ≤ m and 0 ≤ j ≤ n, and that the recLCSLength algorithm is executed
with inputs s and t, when C[s, t] is equal to c[s, t] at the beginning of this
execution of the algorithm. Then this execution terminates with c[s, t] returned.
Furthermore, C[s, t] is equal to c[s, t] when execution ends.

3. Suppose that s, t, i, and j are integers such that 0 ≤ s ≤ i ≤ m and that
0 ≤ t ≤ j ≤ n. Consider any execution of the recLCSLength algorithm with
inputs s and t that is part of the execution of memLCSLength with i and j.
The former execution ends with the value of c[s, t] returned as required, with
C[s, t] = c[s, t] stored.

4. the memLCSLength algorithm correctly solves the length of longest common
subsequence problem.

Solution. We shall prove each of the claims to arrive at a proof of correctness.

1. By inspection of the code, C[s, t] is null when recLCSLength is called during an
execution of memLCSLength. Moreover, the value of C[s, t] is only changed when
recLCSLength is called with inputs s and t.

2. This follows from inspection of the code.

3. This third part can be proven by strong induction on s + t, with the base cases
of the sum equal to 0 and 1. Recall that we need to state and prove the subclaim
concerning what happens after the first time the recLCSLength algorithm is called
on s and t. This is left as an exercise to the reader.

4. This follows from inspection of the code, with use of the third part of this proof
when i ≥ 1 and j ≥ 1.

�

The recursion tree method can once again be used to bound the number of steps used
by the recursive subroutine. By inspection of the code that, if a nontrivial instance is
being solved for the first time, then either one smaller instance is formed and recursively
solved, or two smaller instances are formed and recursively solved. It follows that the
recursion tree for an execution of the recLCSLength algorithm on inputs i and j such
that 1 ≤ i ≤ m and 1 ≤ j ≤ n can be considered a binary tree.

It can be proven by induction on either the size or depth of a binary tree that the
number of leaves in the tree is at most one more than the number of internal nodes. The
internal nodes correspond to the first executions of the algorithm on various nontrivial
instances of this problem, and there are ij of these. Leaves of the recursion tree correspond
either to initial solutions of instances of this problem on trivial inputs, or to solutions of

48

David Ng Design and Analysis of Algorithms I

the problem for instances that have already been solved. Thus, the number of steps used
by the recLCSLength algorithm when executed on inputs 1 ≤ i ≤ m and 1 ≤ j ≤ n can
be shown to be at most 7ij + i+ j + 3. Now, the memLCSLength algorithm uses 2 steps if
i = 0 or j = 0, and uses three steps along with initializeC and recLCSLength. Thus,
this requires 3 + (3ij + 4i+ 4) + (7ij + i+ j + 3) = 10ij + 5i+ j + 10 ∈ Θ(ij) steps.

§13 October 24, 2017

§13.1

Scheduling and Selection problems regularly arise. Consider the following quote that
illustrates one instance of this problem.

Imagine you are a highly-in-demand actor, who has been presented with offers
to star in n different movie projects under development. Each offer comes
specified with the first and last day of filming, as well as the fee that you will
be paid to star in it. To take the job, you must commit to being available
throughout this entire period. Thus you cannot simultaneously accept two
jobs with intervals that overlap.

This suggests the following computational problem of weighted activity scheduling.
We may assume that start times, finish times, and values are all integers. The solution is
essentially the same if these can be arbitrary real numbers instead.

Example 13.1 (Weighted Activity Scheduling)

The precondition is that a set I of n intervals on the line, including the integer start
time si, the finish time fi such that si < fi, and the value vi > 0 for every interval i
where 0 ≤ i ≤ n− 1 is given as input. The precondition is that a subset of mutually
non-overlapping intervals in I whose total is as large as possible is returned.

However, we will solve a simpler problem than this. The intervals that we consider will
be represented using an array M with length n. For 0 ≤ i ≤ n− 1, M

Solution. �

§14 October 31, 2017

§14.1 Greedy Algorithms - Minimizing Sum of Completion Times

We now shift our focus to optimization problems. Consider a sequence of tasks a1, a2, ..., an
to perform for some positive integer n. These tasks can be completed in any order. For
1 ≤ i ≤ n, the task ai has a non-negative processing time pi, where p1, p2, ..., pn are
distinct. We define the completion time for task ai as the sum of the processing times of
this task and all other tasks that are ahead of this one.

49

David Ng Design and Analysis of Algorithms I

Example 14.1

Suppose that we have n = 3. There are 3! = 6 orderings that are possible. With
the ordering a2, a3, a1, the completion time c1 of task a1 would be p2 + p3 + p1. The
completion time c2 of a2 would be p2. Similarly, the completion time c3 of a3 is
p2 + p3. Suppose instead that we chose the ordering a1, a3, a2. Then the completion
time, c1 of the task a1 would be p1. The completion time c2 of the task a2 would be
p1 + p3 + p2, and the completion time c3 of task a3 would be p1 + p3.

Now, suppose that we are paid more for each task if it is completed sooner rather than
later. Thus, we want to keep the sum of completion times c1 + c2 + ...+ cn as small as
possible. This suggests the following computational problem.

Example 14.2 (Minimizing the Sum of Completion Times)

The precondition is that a sequence a1, a2, ..., an of tasks and corresponding non-
negative distinct integer processing times p1, p2, ..., pn for a positive integer n are
given as input. The postcondition is that a re-order b1, b2, ..., bn of the input tasks is
returned, such that the sum of the corresponding completion times c1 + c2 + ...+ cn
is minimized.

There is a simple brute force solution for this problem. One could simply list all possible
re-orders for the input tasks and return the one that minimized the corresponding sum
of completion times. However, there are n! re-orders that must be considered, so this
would be an exponential time algorithm that would be too slow to be useful in practice.

This is an example of an optimization problem. An optimization problem is a compu-
tational problem with a specific structure. These arise in a variety of applications.

1. The problem always defines a set of feasible solutions. These are not all correct
solutions (or outputs to be returned) for this instance of the problem, but they are
“candidates” that must be considered. For instance, consider a sequence a1, a2, ..., an
(with associated processing times) of this optimization problem. Every one of the n!
re-orders of this sequence of tasks is a potentially feasible solution for this instance
of the problem.

2. The problem definition includes a measure function that maps each feasible
solution to a real number. For this problem, the measure function maps every
re-order b1, b2, ..., bn to the corresponding sum of completion times c1 + c2 + ...+ cn.

3. The problem is either a maximization problem or a minimization problem.
In the former, a feasible solution that maximizes the value of the measure function
must be returned as output as this measures some form of reward. In the latter, a
feasible solution that minimizes the value of the measure function must be returned
as output as this measures a cost or penalty. As an example, the problem that we
are concerned with is a minimization problem, since we want the smallest total
completion time.

A greedy algorithm is a kind of algorithm that can sometimes (not always) be used to
solve an optimization problem:

• Trivial instances of the problem are solved using some simple brute force method.

50

David Ng Design and Analysis of Algorithms I

• A solution for a nontrivial instance is assembled in stages by repeatedly choosing
the option that optimizes (either my maximizing or minimizing) the value of some
easily computable local objective function. That is, by making a greedy choice.

Unfortunately, things that look like greedy algorithms are often incorrect because they
do not maximize or minimize the value of the objective function for maximization and
minimization problems respectively. Some greedy strategies that seem plausible do not
come close to this at all. Establishing the correctness of a greedy algorithm is possibly
the most challenge part of the design and analysis of this kind of algorithm.

Solution. [Minimizing the Sum of Completion Times] Let n be a positive integer and let
a1, a2, ..., an be a sequence of tasks with processing times p1, p2, ..., pn. Then there exists a
re-ordering b1, b2, ..., bn of a1, a2, ..., an so that the sum of completion times c1 + c2 + + cn
is less than or equal to to the sum of completion times for any other re-ordering of this
sequence of tasks.

The set of all re-orderings of the tasks is both finite and nonempty. In particular,
there are n! such re-orderings. The sum of completion times is a well-defined, total,
integer-valued function of these re-orderings. It follows immediately from the above
that there must be at least one re-ordering of the tasks that minimizes the value of this
function, as claimed.

A trivial instance of the problem occurs when n = 1. In this case, we have a single
task a1 with its processing time p1. Since there is one ordering of a single task, input a1

is returned. To solve the nontrivial instances, we adopt the following greedy strategy.
Notice that if we place a task with a processing time that is larger near the end, then its
processing time is included in a fewer number of completion times for this reordering.
This suggests that our greedy strategy should be to choose task ai such that pi > pj for
all integers j where 1 ≤ j ≤ n and i 6= j. In other words, the unique task with maximal
processing time ai should be placed at the end of the output reordering so that bn = ai.

Suppose that we have the sequence a1, a2, ..., an with n ≥ 2. If b1, b2, ..., bn is a re-
ordering of the tasks such that the processing time of the final task bn is not larger than
all of the other processing times, then there is a different reordering b̂1, b̂2, ..., b̂n with a
strictly smaller sum of completion times.

To see this, let b1, b2, ..., bn be a re-ordering with bn = ai where 1 ≤ i ≤ n and pi
is not the largest processing time. Then there is some integer j with 1 ≤ j ≤ n and
j 6= i such that pj > pi. In this case, aj must be bm for some integer 1 ≤ m < n. Then,
consider the new re-ordering where we swap bm with bn. Let C be the sum of completion
times originally, and Ĉ be the new sum of completion times. It suffices to show that
Ĉ − C < 0 to show that there is a different reordering with a strictly smaller sum of
completion times. For 1 ≤ h ≤ m− 1, bh = b̂h, so they have the same completion times.
For m ≤ h ≤ n, let the corresponding completion times be dh and d̂h. Clearly, dn = d̂n
since they contain the same processing times. On the other hand, since bm = b̂n = aj ,

b̂m = bn = ai, and bh = b̂h for m+ 1 ≤ h ≤ n− 1, it can be checked that

d̂h = dh + pi − pj

for m ≤ h ≤ n. That is, since we are swapping a longer processing time to the back, each
processing time after and including the swap now add the smaller value instead of the
larger one. It follows that

Ĉ − C = (n−m)(pi − pj) < 0,

since n > m and pi < pj .

51

David Ng Design and Analysis of Algorithms I

As a consequence of the above proof, there is a re-ordering b1, b2, ..., bn of a1, a2, ..., an
that minimizes its sum of completion times so that the processing time for bn is the
largest processing time of any input task. This follows since there must be a correct
solution for this instance of the problem as previously shown, and the solution must be
one such that the processing time for bn is the largest of all processing times as previously
shown.

But now, consider when b1, b2, ..., bn−1 is not a correct solution of the smaller problem
including tasks a1, a2, ..., ai−1, ai+1, ai+2, ..., an, even though bn = ai is the task with the
largest processing time. But we know that this can be reduced from rearranging in some
way so that the largest processing time is once again brought to the back. We show this
by concluding that there is another re-ordering of a1, a2, ..., an with a strictly smaller
completion time.

To show this, we consider a re-ordering b̂1, b̂2, ..., b̂n−1 with completion time Ĉ that
is the correct solution to the smaller problem, compared to the original subset of the
re-ordering b1, b2, ..., bn−1 with completion time C. Clearly, Ĉ < C. Now, considering
b̂n = bn = ai, we note that b̂1, b̂2, ..., b̂n is a re-ordering of the original input tasks with
a completion time of Ĉ + (p1 + p2 + ...+ pn), while b1, b2, ..., bn is a re-ordering with a
completion time of C + (p1 + p2 + ... + pn). The difference of the completion times if
Ĉ − C, and since Ĉ < C, this establishes the claim.

Therefore, we can determine a unique re-ordering b1, b2, ..., bn of tasks that minimizes
the sum of completion times. More specifically, it has the following structure. If n ≥ 2,
bn = ai for the integer i such that 1 ≤ i ≤ n and pi > pj for all j where 1 ≤ j ≤ n and j 6= i.
Additionally, b1, b2, ..., bn−1 is a unique re-ordering of a1, a2, ..., ai−1, ai+1, ai+2, ..., an that
minimizes the sum of completion times.

It follows from induction on n that this provides a correct solution. In the trivial cases,
there is a unique correct solution since there is only one feasible solution. For n = 2,
we can also treat this as a trivial case, since the removal of the task with the largest
processing time produces a trivial instance of the problem. This is important, because it
produces a trivial problem, instead of a nontrivial one. Thus, we arrive at the following
algorithm.

minSCT([a1, a2, ..., an], [p1, p2, ..., pn])

{

if (n == 1)

{

return [a1]

}

else

{

// Set i so that pi is greater than any other processing time. Then

proceed with the next line.

[b1, b2, ..., b(n-1)] = minSCT([a1, a2, ..., a(i-1), a(i+1), a(i+2), ...,

an], [p1, p2, ..., p(i-1), p(i+1), p(i+2), ..., pn])

return [b1, b2, ..., b(n-1), ai]

}

}

To prove that the algorithm is correct because it eventually halts, and returns a
re-ordering of the tasks that minimizes the sum of completion times, we again prove
by induction. A consideration of the trivial instances of the problem by inspection
is sufficient for the base case. Then, together with the above reasoning that we can
determine a unique re-ordering b1, b2, ..., bn of tasks that minimizes the sum of completion

52

David Ng Design and Analysis of Algorithms I

times with the recursive form described previously, we can prove the inductive hypothesis
(to be formed) along with inspection of the code. �

Example 14.3

Determine the efficiency of the minSCTalgorithm

Solution. For n ≥ 1, let T (n) be the number of steps executed in the worst case by the
algorithm when the preconditions are satisfied. We can show from inspection that the
following is a correct recurrence for the algorithm.

T (n) ≤

{
c0 if n = 1,

T (n− 1) + c1n+ c2 if n ≥ 2.

We can then prove by induction that on input n ≥ 1, we find the following.

T (n) ≤ c0 +
n∑
i=2

(c1i+ c2)

≤ c0 + c1

(
n(n+ 1)

2

)
+ c2(n− 1)

≤ c1

2
n2 +

(c1

2
+ c2

)
+ (c0 − c1 − c2)

∈ Θ
(
n2
)
.

Therefore, this algorithm uses O
(
n2
)

steps in the worst case. �

Note that there is an asymptotically faster algorithm that solves the problem. We can
use a sorting algorithm such as mergeSort to sort the input tasks by increasing order of
processing time using O(n log(n)) steps. Then, we return the sorted sequence of tasks
that has been obtained. The cost of computation is dominated by the sorting, so this
algorithm correctly solves the problem using asymptotically fewer steps in the worst case.

We now summarize the process the solve optimization problems with unique solutions
using a greedy algorithm.

1. It was proved that every instance of the optimization problem has at least one
solution. Generally, we confirm that the set of feasible solutions is nonempty and
finite. Additionally, the measure function is a well defined total function from the
set of feasible solutions. It follows immediately that there is at least one feasible
solution that either maximizes or minimizes the measure function, so there is a
correct solution.

2. Trivial instances are identified and the solutions are described.

3. A greedy strategy that is used to construct the output is described.

4. It is proved that the only correct outputs for a given nontrivial instance of the
problem are those that are formed using the above strategy. Because it was shown
that there is at least one correct output that exists, it follows that the correct
output is formed using this strategy. To do this, we generally consider a feasible
solution such that the condition in the greedy strategy is not held. We then argue
that we could produce a feasible solution that is better. We essentially do this for
one element, then successively apply this reasoning.

53

David Ng Design and Analysis of Algorithms I

5. A process to complete a solution for a nontrivial instance is described and proved
correct. This is usually done by forming smaller instances of the problem and
recursively solving it. As part of this process, it is shown that there is a unique
correct solution for any instance of the problem being solved.

6. A simple algorithm that solved the problem is then given.

7. The correctness of this algorithm is a straightforward consequence of the analysis
that had been completed.

8. A simple recurrence is formed and solved in order to bound the number of steps
executed by the algorithm. This is usually a worst case analysis as a function of
the input size.

9. It is noted that an asymptotically faster algorithm may result from making use of
sorting. It may be easy enough to argue that this new algorithm is also correct,
since it always returns the same output as the original algorithm.

Remark 14.4. It is important to note that proposed greedy strategies are often incorrect,
because they do not optimize the value of the measure function in all cases. One can
generally prove the incorrectness of a proposed greedy strategy by giving a specific
counterexample. That is, we find a nontrivial instance of the problem such that no
correct solution for this instance of the problem can be obtained by following the greedy
strategy.

§15 November 2, 2017

§15.1 Greedy Algorithms - Unweighted Activity Selection

We now introduce and apply a process that can be used to design and prove the correctness
of a greedy algorithm for a given optimization problem, even when the solution for any
instance of the problem is not necessarily unique. To accomplish this, we consider a
slightly simpler version of a problem that had previously been considered.

Example 15.1

The precondition is that a sequence I0, I1, ..., In−1 of n intervals is given as inputs for
a non-negative integer n. The ith interval Ii includes a non-negative start time si and
a non-negative finish time ti such that si < ti for 0 ≤ i ≤ n− 1. The postcondition is
that a subset S of the input intervals is returned. Specifically, none of the intervals
in S can overlap, so if 0 ≤ i ≤ j ≤ n− 1 and Ii, Ij ∈ S, then either fi < sj or fj < si.
Additionally, S is as large as possible, subject to the previous constraint.

Solution. This can be modeled as a maximization problem. For an instance of the
problem, a feasible solution is any subset S of input intervals that do not overlap. Let F
be the set of all feasible solutions for this instance of the problem. The measure function
(with a value that should be maximized) is the total function f : F → N , such that for
every feasible solution S ∈ F , we have f(S) = ‖S‖.

Claim 15.2 (Existence of Correct Solution). Let n be a non-negative integer. Consider an
instance of the Unweighted Activity Selection problem including n intervals I0, I1, ..., In−1

as described above. Then at least one correct solution for this instance of this problem
exists.

54

David Ng Design and Analysis of Algorithms I

Proof. Consider an instance of this problem, as defined above. Then the empty set of the
input intervals is always a feasible solution for this instance of this problem, so the set F
of all feasible solutions is nonempty. On the other hand, the set F must be a subset of
the set of all subsets A of the input instances. In this case, ‖F‖ ≤ ‖A‖ = 2n, so F is
finite because A is. Since the measure function is a well-defined total function from F
to N , there must certainly be some feasible solution S ∈ F that maximizes the value of
this measure function. This feasible solution S is by definition, a correct solution for this
instance of the problem, as needed to establish the claim. �

Let us consider a trivial instance of this problem when n = 0 or n = 1. If n = 0,
then there is only one feasible solution, the empty set ∅. This must certainly be the
unique correct solution as well. In the case that n = 1, then there are exactly two feasible
solutions. These are S0 = ∅ and S1 = {I0}. Since ‖S1‖ = 1 > 0 = ‖S0‖, the unique
correct solution for this instance of the problem is S1.

The set S o f intervals to be returned should be initialized to be the empty set ∅.
There are several strategies that might seem like plausible greedy strategies.

1. Include in S an interval Ii such that the start time si is as small as possible.

2. Include in S an interval Ii such that the length fi − si is as small as possible.

3. Include in S an interval Ii such that the finish time fi is as small as possible.

It can be shown that the first two strategies are incorrect, while the third can be proved
to be correct. We will use the third option in our design of a greedy algorithm to solve
this problem. The process used in the previous lecture depended heavily on the fact that
there was only one correct solution for any given instance of the optimization problem
being solved. We already know that this is not the case for the problem now being
considered. A different process must now be used. Clearly, the third option may identify
more than one interval that might be first picked, since finish times are not necessarily
unique. There may even be correct solutions that do not include any of these choices.
However, this does not matter, so long as we can prove that there is at least one correct
solution that is obtained by using this greedy strategy.

Claim 15.3 (Correctness of Greedy Strategy). Let n be an integer with n ≥ 2. Consider
an instance of the Unweighted Activity Selection problem with n intervals I0, I1, ..., In−1.
Let i be an integer such that 0 ≤ i ≤ n − 1 and fi ≤ fj for every integer j such that
0 ≤ j ≤ n− 1. Then there exists a correct solution S ⊆ {I0, I1, ..., In−1} for this instance
of the problem where Ii ∈ S.

Proof. It follows from the proof of the existence of a correct solution that some correct
solution Ŝ ⊆ {I0, I1, ..., In−1} of this instance of the problem exists. Either Ii ∈ Ŝ, or it
is not. Consider these two cases separately. In the first case, it suffices to set S to be Ŝ
to establish the claim.

In the case that Ii 6∈ Ŝ, if a feasible solution S such that Ii ∈ S and ‖S‖ = ‖Ŝ‖ can
be described and proved to have these properties, then it follows that S is a correct
solution with Ii ∈ S, establishing the claim. Note that Ŝ must be nonempty, since the
set S′ = {Ii} would otherwise be a feasible solution such that ‖S′‖ = 1 > 0 = ‖Ŝ‖,
contradicting the choice of Ŝ as a correct solution for this instance of the problem. There
must now exist some integer j such that 0 ≤ j ≤ n− 1 with Ij ∈ Ŝ and fj ≤ fk for every
integer k with 0 ≤ k ≤ n− 1 and Ik ∈ Ŝ. That is, interval j has the smallest finish time.

55

David Ng Design and Analysis of Algorithms I

Now, consider the set S of ˆI0, I1, ..., In−1 obtained from Ŝ by removing Ij and include Ii.
That is,

S =
(
Ŝ\{Ij}

)
∪ {Ii}.

S clearly includes the interval Ii and ‖S‖ = ‖Ŝ‖. All that is left to prove is that S is a
feasible solution for this instance of the problem.

Suppose next that ‖Ŝ‖ = 1. Then Ŝ = {Ij} and S = {Ii}. Because 0 ≤ i ≤ n− 1, S
is a feasible solution for this instance of the problem as required, because there are no
other properties to be established. Suppose instead that ‖Ŝ‖ ≥ 2 so that ‖S‖ = ‖Ŝ‖ ≥ 2
as well. Consider any pair of integers s and t such that 0 ≤ s, t ≤ n − 1, s 6= t, and
Is, It ∈ S. If it can be shown that the intervals Is and It do not overlap, then since s
and t were arbitrarily chosen, it follows that no pair of distinct intervals in S overlap.
Thus, S is a feasible solution for this instance of the problem as required. To show this,
either i ∈ {s, t}, or it is not. Consider the cases separately.

In the case that i 6∈ {s, t}, then Is, It ∈ Ŝ, so that these intervals cannot overlap as
required. This follows since Ŝ is a feasible solution for the problem. Alternatively, in
the case that i ∈ {s, t}, switching s and t as necessary so that i = s and i 6= t, we find
that It ∈ Ŝ. Now, t 6= j, since It ∈ S and Ij 6∈ S. Thus, Ij and It are distinct intervals in
hatS and since Ŝ is a feasible solution for this instance, it follows that Ij and It cannot
overlap. By the choice of j, fj ≤ ft since It ∈ Ŝ. Since sj ≤ tj , it certainly cannot be
that ft < sj , so it must be fj < st. But since fi ≤ fj , it follows that fi ≤ fj < st as well,
as required to establish that the intervals Is = Ii and It do not overlap. It now follows
that S is a feasible solution for this instance of the problem. �

Consider another instance of the problem with a sequence of intervals

Î0, Î1, ..., Îm−1

for some non-negative integer m that includes all (and only) the intervals in the original
sequence

I0, I1, ..., In−1

that are distinct from Ii (the interval with the smallest finish time) and do not overlap
with it. That is, we consider the intervals Ij where 0 ≤ j ≤ n− 1 and j 6= i such that
fi < sj . This is a smaller instance of the problem, since the interval Ii is not included.
Consider any correct solution for this smaller instance of the problem and let

Ŝ ⊆ {I0, I1, ..., Ii−1, Ii+1, Ii+2, ..., In−1}

be the set of intervals included in this solution. Let S = {Ii} ∪ Ŝ.

Claim 15.4 (Feasibility of Solution with Smaller Instances). The set S as described
above is a feasible solution for the original instance of the problem.

Proof. S is certainly a subset of {I0, I1, ..., In−1}, so it remains to confirm that there is
no pair of distinct intervals Is, It ∈ S that overlap. Either i ∈ {s, t}, or it is not. Consider
these cases separately. In the case that i 6∈ {s, t}, the intervals Is and It are distinct
intervals that were included in the correct solution for the smaller instance of the problem
(including the intervals Î0, Î1, ..., Îm−1). It follows that Is and It cannot overlap.

In the case that i ∈ {s, t}, we consider i = s, and i 6= t by switching our choice of name
arbitrarily. In this case, It was included in the correct solution for the smaller instance
of the problem, so It ∈ {Î0, Î1, ..., Îm−1}. It follows by the choice of these intervals that
fi < st so that the intervals Is = Ii and It do not overlap. Since s and t were arbitrarily
chosen, it now follows that S is a feasible solution for the initial problem as desired. �

56

David Ng Design and Analysis of Algorithms I

Claim 15.5 (Correctness of Solution with Smaller Instances). The above set S is a
correct solution for the original instance of the problem.

Proof. It follows from the proof of the correctness of the greedy strategy that there exists
at least one correct solution S′ ⊆ {I − 0, I − 1, ..., In−1} for the original instance of the
problem such that Ii ∈ S′. Let S′′ = S′\{Ii}. Consider any integer j with 0 ≤ j ≤ n− 1
and Ij ∈ S′′. Since S is a feasible solution, by the proof of feasibility of the solution
with smaller instances, the intervals Ii and Ij do not overlap. It follows by the choice
of i that fi ≤ fj so it is not possible for fj < si. It must be true that fi < sj so
that Ij ∈ {Î0, Î1, ..., Îm−1}. Because this is true for all Ij ∈ S′′, S′′ ⊆ {Î0, Î1, ..., În−1}.
Furthermore, no pair of distinct intervals Is, It ∈ S′′ can overlap since they are also
distinct intervals in the correct solution S′. It follows that S′′ forms a feasible solution
for smaller instances of the problem with the intervals Î0, Î1, ..., Îm−1. Since S′ forms a
correct solution for this instance of the problem, ‖Ŝ‖ ≥ ‖S′′‖. Because S = Ŝ ∪ {Ii},
S′ = S′′ ∪ {Ii}, Ii 6∈ Ŝ and Ii 6∈ S′′, the magnitudes of S is greater than or equal to the
magnitude of S′. Since S is a feasible solution, S′ is a correct solution with a magnitude
greater than or equal to that of S. Thus, ‖S‖ = ‖S′‖ and since S is a feasible solution,
it follows that S is now a correct solution because S′ is. �

To obtain the algorithm, we will assume that we can define a class Interval. For
each object I of type Interval, we can examine the name (the unique string that
identifies the interval), the start time, and the finish time. Let us assume that another
class IntervalSeq is used to represent sequences of intervals. For each object of this
type, we will assume that we can examine the length, iterate over the intervals in the
sequence, initialize it to the empty sequence, or append another interval to the end of
the sequence (increasing the length as well). Additionally, we define a class IntervalSet
that represents sets of intervals. We can initialize the set to be empty, initialize it to be
a fixed set of intervals with size one, or include another interval into the set.

Suppose that a subroutine greedyChoice receives the input sequence of intervals as
input when n ≥ 1 and returns an interval in this sequence whose finish time is less than
or equal to all others as output. This interval can be discovered by making a single
iteration over the intervals in the input sequence, so the cost is at most linear. We also
have a subroutine smallerInstance that receives an interval and a sequence of intervals
as input. It returns a sequence of intervals as output, including only those whose start
times are greater than the finish time of I. This can also be discovered using at most a
linear number of steps. Thus, we obtain the following algorithm.

IntervalSet greedyActivitySelection(IntervalSeq intervals)

{

// We assume that intervals contains I0, I1, ..., I(n-1)

integer n = intervals.length

if (n == 0)

{

return the empty set

}

else if (n == 1)

{

return the set containing I0

}

else

{

Interval I = greedyChoice(intervals)

IntervalSeq smaller = smallerInstance(I, intervals)

57

David Ng Design and Analysis of Algorithms I

IntervalSet S = greedyActivitySelection(smaller)

S = S union I

return S

}

}

The claims that have already been proved make it easy to prove correctness of the
above algorithm. This can be proven by induction on n. �

Example 15.6

Determine the number of steps executed by the greedyActivitySelection algo-
rithm when an object of type IntervalSeq with a length of at most n is given as
input.

Solution. It is clear that T (n) is a non-decreasing function of n. One can see by inspection
that there are positive constants c0, c1, and c2 such that

T (n) ≤

{
c0 if n ≥ 1,

T (n− 1) + c1n+ c2 if n ≥ 2.

This is the same as the greedy algorithm for minimizing the sum of completion times.
Clearly, T (n) ∈ O

(
n2
)
.

With some additional effort, one can prove that we can find another algorithm that is
also correct. The following algorithm can be shown correct since it always returns the
same set of output as greedyActivitySelection. It follows that there is an algorithm
that solves the problem using O(n log(n)) steps in the worst case.

1. Start by sorting the input intervals by non-decreasing finish time so that

f0 ≤ f1 ≤ ... ≤ fn−1.

Leave the relative order of a pair of intervals Ii and Ij unchanged when they have
the same finish times.

2. Initialize the set of intervals to be returned S to {I0}, and initialize the integer
variable finish to be f0.

3. For each integer i such that 1 ≤ i ≤ n, consider the interval Ii. If si > finish,
then we add interval Ii to set S and set finish to fi.

4. Return the set S.

�

§15.2 Greedy Algorithm Design Process

We generalize the design process from the greedy algorithm design process described
in the previous lecture that accounted only those with unique solutions. We following
design process can be used to solve any optimization problems using a greedy algorithm.

1. It was proved that every instance of the optimization problem has at least one
solution. Generally, we confirm that the set of feasible solutions is nonempty and
finite. Additionally, the measure function is a well defined total function from the

58

David Ng Design and Analysis of Algorithms I

set of feasible solutions. It follows immediately that there is at least one feasible
solution that either maximizes or minimizes the measure function, so there is a
correct solution.

2. Trivial instances are identified and the solutions are described.

3. A greedy strategy that is used to construct the output is described.

4. It is proved that there always exists a correct solution for this instance of the
problem that includes whatever has been introduced by the application of the
greedy strategy. This was not done by establishing that every correct solution
must be like this. Instead, an exchange argument was used. It was noted that
some correct solution must exist. If this solution includes the greedy choice, then
there is nothing more to do. Otherwise, a modification of this correct solution was
described and it was proved that the result was still a (different) correct solution
for this instance of the problem.

5. A process to complete a solution for a nontrivial instance is described and proved
correct. This is usually done by forming smaller instances of the problem and
recursively solving it. First, we prove that solution S constructed using the above
process is feasible (this is generally a consequence of the construction). We then
consider that it had already been proved that there is some correct solution S′ that
is consistent with the application of the greedy strategy. After establishing a small
number of other properties of S′, it was possible to compare S with S′ and show
that they have the same value for the measure function. It immediately follows
that S is a correct solution because S′ is.

6. A simple algorithm that solved the problem is then given.

7. The correctness of this algorithm is a straightforward consequence of the analysis
that had been completed.

8. A simple recurrence is formed and solved in order to bound the number of steps
executed by the algorithm. This is usually a worst case analysis as a function of
the input size.

9. It is noted that an asymptotically faster algorithm may result from making use of
sorting. It may be easy enough to argue that this new algorithm is also correct,
since it always returns the same output as the original algorithm.

In the case of a unique solution, it was possible to prove by contradiction, since one
could argue that if one returned anything else than what the algorithm gave, the output
would be incorrect. This strategy fails when correct solutions are not guaranteed unique.
Instead, we must use an exchange argument to establish correctness. This involves the
comparison of the results returned by the algorithm with those of a hypothetically correct
solution.

§16 November 7, 2017

§16.1 Greedy Algorithms - Data Compression and Huffman Trees

We will now proceed to analyze a greedy algorithm that solves a problem concerning
data compression. The structure of the greedy algorithm used includes an additional

59

David Ng Design and Analysis of Algorithms I

initialization phase. The process used to complete the greedy strategy once one has been
found is also slightly different from previous examples.

Suppose we wist to transmit an encoded version of a text file, encoded as a sequence
of 0’s and 1’s over a reliable channel. For instance,

MADAM I’M ADAM

We know the frequency, which is the number of occurrences of each symbol. In the above
string, “M” and “A” each have a frequency of four, “D” and the blank (from now on
referred to as “ ”) each have a frequency of two, and both “I” and “’” have a frequency
of one. No other symbols appear in this string.

Let Σ be the set of symbols included in the message being sent. This problem is trivial
and uninteresting if ‖Σ‖ = 1, so it will be assumed that ‖Σ‖ ≥ 2. Note that in our
example, we have Σ = {M,A,D, , I,′ }. Let ϕ : Σ → {0, 1}∗ be a total function such
that ϕ(σ) 6= λ, where λ denotes the empty string, for every symbol σ ∈ Σ. This can be
extended to define a mapping ϕ : Σ∗ → {0, 1}∗ such that for every non-negative integer
m, and every string

ω = α1α2...αm

with length m, one would set

ϕ(ω) = ϕ(α1)ϕ(α2)...ϕ(αm),

so that ϕ(ω) is the concatenation of the encodings of the symbols in ω. this kind of
mapping is only useful if it is injective. That is, for all strings ω1, ω2 ∈ Σ∗, if ω1 6= ω2,
then ϕ(ω1) 6= ϕ(ω2).

One way to achieve this is to use a fixed length code. For instance, set l =
dlog2 (‖Σ‖)e and map each symbol σ ∈ Σ to a string ϕ(σ) ∈ Σ∗ with length l in such a
way so that the mapping function is injective. In our example, we find that our alphabet
Σ has a size of 6. Thus, l = dlog2 (‖Σ‖)e = 3. We could therefore define the function as
follows.

ϕ(M) = 000 ϕ(A) = 001 ϕ(D) = 010

ϕ() = 011 ϕ(I) = 100 ϕ(’) = 101

Then, we find that we can just concatenate the individual results to find the following.

ϕ(MADAM I’M ADAM) = 000001010001000011100101000011001010001000.

This is a string comprised of 0 and 1 (meaning the string is in {0, 1}∗) with a length of
42. If the string ω ∈ Σ∗ has a length m, then this always yields an encoding ϕ(ω) with a
length of ml = m dlog2 (‖Σ‖)e.

Another way to encode the symbols in an injective mapping is to use a prefix code.
This is a mapping ϕ : Σ → {0, 1}∗ such that if α1, α2 ∈ Σ and α1 6= α2, then ϕ(α1) is
not a prefix of ϕ(α2). We could therefore define the function as follows.

ϕ(M) = 10 ϕ(A) = 01 ϕ(D) = 11

ϕ() = 001 ϕ(I) = 0000 ϕ(’) = 0001

Indeed it can be confirmed that no string is a prefix of another, so this is a prefix code.
Then, we find that we can just concatenate the individual results to find the following.

ϕ(MADAM I’M ADAM) = 1001110110001000000011000101110110.

60

David Ng Design and Analysis of Algorithms I

Note that this is actually a shorter string than any encoding that can be obtained by
using a fixed length code. Clearly, a length of 34 is shorter than a length of 42.

Now, since ϕ(α1) is not a prefix of ϕ(α2) when ϕ is a prefix code and α1, α2 ∈ Σ such
that α1 6= α2, then every prefix code can be represented using a binary tree. That is, we
could obtain a binary code corresponding to the above prefix code.

• The elements of Σ label the leaves, with each symbol in Σ being used as the label
for exactly one leaf.

• The edges from a node to its left child are labelled with 0, while edges from a node
to its right child are labelled with 1.

• For all α ∈ Σ, ϕ(α) is a string of 0’s and 1’s that label the edges from the root
down to the leaf labelled with α.

If our goal is to minimize the length ‖ϕ(ω)‖ of an encoding of a string ω, then it
suffices to consider prefix codes whose corresponding binary trees are full binary trees
such that every internal node has two children.

Definition 16.1. A prefix code ϕ with this property that ‖ϕ(ω)‖ is as small as possible
is called a Huffman code for ω. Its corresponding binary tree is known as the Huffman
tree for ω.

Example 16.2 (Huffman Tree)

The precondition is that a finite alphabet Σ and the function f : Σ→ N such that
f(α) is the number of occurrences of α in a string ω for all α ∈ Σ are given as input.
The output is a Huffman tree for ω.

Solution. To model this as a minimization problem, we first define the set F of feasible
solutions to be the set of all full binary trees, with edges labelled by 0’s and 1’s, and
with leaves labelled by symbols in Σ as described previously. The measure function is
the function g : F → N so that for any tree t ∈ F ,

g(t) =
∑
α∈Σ

f(α) · ‖ϕ(α)‖.

The measure function is the length of the encoding of ω using the prefix code ϕ corre-
sponding to tree t.

Now, we will show that a correct solution always exists. To do so, we will make use of
the following claim.

Claim 16.3. Let X(1) = 1 and let X(n) be the number of full binary trees with n
leaves, labelled with the distinct values of α1, α2, ..., αn for any integer n ≥ 2. Then

X(n) < 2(n2) for every positive integer n

Proof. This can be proved by strong induction on n. The base case of n = 1, then by
definition X(1) = 1 < 212 . In the base case of n = 2, we note that there are exactly two
full binary trees where one has α1 on the left, while the other has α2 on the left instead.
Thus, X(2) = 2 < 222 .

In the inductive case, let k be an integer such that k ≥ 2. Additionally suppose
that X(i) < 2i

2
for every integer i such that 1 ≤ i ≤ k. We will now show that

X(k + 1) < 2(k+1)2 . Thus, consider the full trees whose labels are α1, α2, ..., αk+1. The

61

David Ng Design and Analysis of Algorithms I

number of leaves in the left subtree of any such tree must total some integer j such that
1 ≤ j ≤ k. For any choice of j, there are

(
k+1
j

)
choices for labels of leaves in the left

subtree. For any such choice, there are X(j) possible left subtrees and X(k + 1 − j)
possible right subtrees. Thus, we conclude the following after nothing the inductive
hypothesis holds for 1 ≤ j, k + 1− j ≤ k.

X(k + 1) =
k∑
j=1

(
k + 1

j

)
X(j)X(k + 1− j)

<
k∑
j=1

(
k + 1

j

)
2i

2
2(k+1−j)2

<
k∑
j=1

(
k + 1

j

)
2(k+1)2−2(k+1)j+2j2

In the above, let h(j) = (k + 1)2 − 2(k + 1)j + 2j2. It can be checked that h(j) = h(k) =
k2 + 1, h′(j) = −2(k + 1) + 4j, and h′′(j) = 4. Thus, h has a local minimum when
i = (k + 1)/2 and has the same maximal value of k2 + 1 at both endpoints of the range
for this summation. Thus, h(j) ≤ k2 + 1 for every integer j such that 1 ≤ j ≤ k. The
proof continues as follows.

X(k + 1) <
k∑
j=1

(
k + 1

j

)
2(k+1)2−2(k+1)j+2j2

<
k∑
j=1

(
k + 1

j

)
2k

2+1

< 2k
2+1

k+1∑
j=0

(
k + 1

j

)
= 2k

2+12k+1 < 2(k+1)2

Because k ≥ 2, this is as required to complete the inductive step and establish the
claim. �

The set F of all feasible solutions for any instance of the problem is therefore a

finite nonempty set. As noted, it is ‖F‖ ≤ 2(n2). Since the measure function for this
minimization problem is a well-defined total function from F to N, it follows that there
is a solution of this problem for every instance of it.

Next, we will identify and solve trivial instances of the problem. We will consider an
instance to be trivial when ‖Σ‖ = 2 so that Σ = {α1, α2} for a distinct pair of symbols
α1 and α2. There are only two feasible solutions. The first is when α1 is on the left
and α2 is on the right, and the second is when these positions are swapped. It is easily
checked that if ϕ1 is the prefix code corresponding to the first of these trees and ϕ2 is
the prefix code corresponding to the second tree, then these are both correct solutions
for this instance of the problem because the following holds.

n∑
k=1

‖ϕ1(αi)‖f(k) =

n∑
k=1

‖ϕ2(αi)‖f(k) =

n∑
k=1

f(k) = ‖ω‖.

Instead, we now suppose that n = ‖Σ‖ ≥ 3. Now, we will consider the greedy strategy
used to solve nontrivial instances of the problem. Let i and j be integers such that
1 ≤ i, j ≤ n, where i 6= j. We require that αi and αj have frequencies that are at least

62

David Ng Design and Analysis of Algorithms I

as low as those of all other symbols in Σ. That is, if 1 ≤ k ≤ n and k 6∈ {i, j}, then
f(αk) ≥ f(αi) and f(αk) ≥ f(αj). Our greedy strategy will be to decide that the leaves
labelled αi and αj have the same parent. Te following is out proof of correctness of our
greedy strategy.

Claim 16.4. There exists a solution for this instance of the problem (that is, a Huffman
tree) such that the leaves labelled by αi and αj are siblings. That is, they have the same
parent.

Proof. Let t be a solution for this instance of the problem. It follows by the first claim
that at least one solution exists. If the leaves labelled by αi and αj are siblings in t, then
the claim follows. Suppose instead that the leaves labelled by αi and αj are not siblings
in t. Switching αi and αj if necessary, we may assume that the distance li from the root
down the the leaf with label αi is greater than or equal to the distance lj from the root
down the leaf with label αj in t.

Let t̂ be the subtree of t whose root is the sibling of αi. Now, consider switching this
subtree t̂ with αj to obtain the new tree t′. It can be argued that t′ is indeed a feasible
solution for the problem. Now, let S ⊆ Σ be the set of labels of leaves in t̂. Since t and t′

are both full trees, S is nonempty. Because αi and αj both are not in S, then S must
include at least one element αk ∈ Σ as defined previously. For this choice of k, we find
the following. ∑

α∈S
f(α) ≥ f(αk) ≥ f(αj).

Let ϕ be the prefix code of tree t, and ϕ′ be the prefix code of t′.

n∑
h=1

‖ϕ′(αn)‖f(αn)−
n∑
h=1

‖ϕ(αn)‖f(αn) =
∑
α∈S

(lj − li)f(α) + (li − lj)f(αj)

= (lj − li)

(∑
α∈S

f(α)− f(αj)

)

But the value of the last line above is less than zero, since lj ≤ li and
∑

α∈S f(α) ≥ f(αj).
It follows that

∑n
h=1 ‖ϕ′(αn)‖f(αn) ≤

∑n
h=1 ‖ϕ(αn)‖f(αn). Since t′ is a feasible solution

and t is a correct solution, then
∑n

h=1 ‖ϕ(αn)‖f(αn) ≤
∑n

h=1 ‖ϕ′(αn)‖f(αn). This means
that they were in fact equal, so t′ is a correct solution because t is. Since the leaves αi
and αj are siblings in t′, this establishes the claim as required. �

Now that we have shown the correctness of the greedy strategy, we shall now describe
the process that permits us to continue. Suppose that we remove αj from Σ to obtain a
smaller alphabet Σ̂ = Σ\{αj} and produce a string ω̂ ∈ Σ̂∗ from ω by replacing every
copy of αj ∈ ω with a copy of αi. Using our example, if we chose αi to be I and αj to be
’, then we would obtain the following.

Σ̂ = {M,A,D, , I}

ω̂ = MADAM IIM ADAM

The frequencies of letters have changed. Letting f(α) denote the number of occurrences
of α in ω and f̂(α) denote the number of occurrences of α in ω̂, we find the following.

f̂(α) =

{
f(α) if α ∈ Σ̂ and α 6= αi,

f(αi) + f(αj) if α = αi.

63

David Ng Design and Analysis of Algorithms I

Because the size of the new alphabet is one less than the original alphabet, this is a
smaller instance of the problem. Let t̂ be a correct solution for this smaller instance of
the problem. That is, t̂ is a Huffman tree for ω̂. We then continue by replacing the leaf
labeled αi with a subtree. This subtree has 0 on the left edge to the leaf αi and has 1 on
the right edge to the leaf αj . This gives us our desired tree t. It can be argued that this
produces a feasible solution for the original problem. We will now show correction of this
method of continuation.

Claim 16.5. Let ω̂ be the string obtained from ω by replacing copies of αj with copies
of αi as previously described. Let t̂ be any Huffman tree for ω̂ and suppose that t is
obtained from t̂ as previously described. Then t is a Huffman tree for ω.

Proof. Recall from the second claim above that there is a Huffman tree t′ for ω such that
the leaves labelled αi and αj are siblings in t′. Switching the roles as necessary, we may
assume that a subtree of t′ is the subtree with the left edge labelled 0 leading to leaf αi
and the right edge labelled 1 leading to leaf αj . Let t̂′ be the tree obtained from t′ by
replacing the above subtree with a leaf labelled αi. The following can be easily verified.

• t̂′ is a feasible solution for the problem instance with string ω̂. Thus, if ϕ̂ is the prefix
code for ω̂ corresponding to tree t̂, and ϕ̂′ is the prefix code for ω̂ corresponding to
t̂′, then we find the following since t̂ is a Huffman tree for ω̂.∑

α∈Σ̂

‖ϕ̂(α)‖f̂(α) ≤
∑
α∈Σ̂

‖ϕ̂′(α)‖f̂(α).

• If ϕ is the prefix code for ω corresponding to t, then since ‖ϕ(αi)‖ = ‖ϕ(αj)‖ =
‖ϕ′(αi)‖+ 1, we find the following.

∑
α∈Σ

‖ϕ(α)‖f(α) =

∑
α∈Σ̂

‖ϕ̂(α)‖f̂(α)

+ f(αi) + f(αj).

• If ϕ′ is the prefix code for ω corresponding to t′, then through similar reasoning,
we find the following.

∑
α∈Σ

‖ϕ′(α)‖f(α) =

∑
α∈Σ̂

‖ϕ̂′(α)‖f̂(α)

+ f(αi) + f(αj).

The following now follows from application of the second, first, and third properties
above.

∑
α∈Σ

‖ϕ(α)‖f(α) =

∑
α∈Σ̂

‖ϕ̂(α)‖f̂(α)

+ f(αi) + f(αj),

≤

∑
α∈Σ̂

‖ϕ̂′(α)‖f̂(α)

+ f(αi) + f(αj),

≤
∑
α∈Σ

‖ϕ′(α)‖f(α).

64

David Ng Design and Analysis of Algorithms I

On the other hand, since t′ is a Huffman tree of ω and t is a feasible solution for the
instance of the problem including ω, then∑

α∈Σ

‖ϕ′(α)‖f(α) ≤
∑
α∈Σ

‖ϕ(α)‖f(α).

Thus, these two expressions are in fact equal and it follows that t is a Huffman tree for ω
because t′ is. This is as required to establish the claim. �

To complete a greedy algorithm for this problem, we first initialize data structures in
order to make this process more efficient. Each can be used as global data by subroutines
used by the main method for the Huffman tree problem.

• An array T with length n will be used to represent information about the Huffman
tree being constructed. For 0 ≤ i ≤ n − 1, T [i] = null if the symbol αi+1 has
not yet been included in the Huffman tree being constructed. Otherwise, T [i] is a
reference to the leaf labelled by αi+1 in this Huffman tree. This can certainly be
initialized by setting T [i] = null for 0 ≤ i ≤ n− 1 using O(n) steps.

• A binary heap H (a minheap) will be used to store elements of the alphabet Σ
currently being considered, using their frequencies as weights. This can be initialized
using O(n log2(n)) steps.

A recursive algorithm can then be used to implement the greedy strategy continuation
method previously described above.

• The elements αi and αj described in the proposed greedy strategy can be found
using a logarithmic number of steps using the EXTRACTMIN operation of the minheap
H. The INSERT operation can then be to reinsert αi using its updated frequency.

• Following the solution of the smaller instance of the problem that has been described,
the array T can also be updated using at most a constant number of steps.

• Using data structures as described above, it can be argued that there exists a
positive integer c such that the number of steps T (n) used by this algorithm in the
worst case satisfies the recurrence

T (n) ≤

{
c if n = 2,

T (n− 1) + c dlog2(n)e if n ≥ 3.

• This can be used to show that this algorithm computes a Huffman tree for a string
ω ∈ Σ∗ using O(n log n) steps in the worst case when ‖Σ‖ = n ≥ 2.

�

§17 November 9, 2017

§17.1 Greedy Algorithms - Offline Caching

The greedy algorithm to be considered solves a simplified problem motivated by a more
complex problem related to memory management. This algorithm is commonly known as
Belady’s Algorithm, or the Clairvoyant Replacement Algorithm. It uses a greedy strategy
that is sometimes known as the longest forward distance.

65

David Ng Design and Analysis of Algorithms I

Modern computers use a cache to store a small amount of data in fast memory. Even
though main memory may be much larger (and much slower), the use of a cache may
significantly decrease processing time. Unfortunately, processing is slowed down again if
information is not in the cache when needed, as it has to be copied from main memory
into the cache, and something else must be removed from the cache to make room for it.
In practice it is necessary to decide what must be removed from the cache as soon as
something else must be brought in. Of course, we do not have any information about
future memory requests. Algorithms that deal with this kind of problem are called online
algorithms. The problem hence described is online hashing.

Another less realistic problem is one in which the entire sequence of memory requests
is made available before it is necessary to figure out how to serve the first (or any later)
request. This version of the problem is called offline caching. To model this more formally,
consider a problem whose instances include the following information.

1. A positive integer M denoting the size of main memory.

2. A positive integer k such that k < M that indicates the size of the cache.

3. A set C ⊆ {0, 1, ...,M − 1} such that ‖C‖ = k. These are the indices in main
memory of the initial contents of the cache.

4. A sequence (r1, r2, ..., rm) of elements of {0, 1, ...,M − 1} indicating the addresses
of pages in main memory that will be requested.

Given the above information, one can define a valid sequence of changes (α1, α2, ..., αn)
with corresponding caches (C0, C1, ..., Cn) to be any pair of sequences that satisfy the
following:

1. C0 = C.

2. For 1 ≤ i ≤ n, if ri ∈ Ci−1, then αi = null and Ci = Ci−1. We say that there has
been a cache hit in this case.

3. For 1 ≤ i ≤ n, if ri 6∈ Ci−1, then αi ∈ Ci−1 and Ci = (Ci−1\{αi}) ∪ {ri}. Thus αi
is the index of the page being removed from the cache in order to include ri . We
say that there has been a cache miss in this case.

Example 17.1 (Offline Caching)

The precondition is that positive integers M and k, a set C, and a sequence
r1, r2, ..., rn) as described above are given as input. The postcondition is that
a valid sequence (α1, α2, ..., αn) such that the number of cache misses is as small as
possible is returned as output.

Solution.

Claim 17.2. Every instance of the Offline Caching problem has a solution.

Proof. Consider an instance of the problem as described above. Then the set F of all
feasible solutions is the set of all valid sequences of changes, and it is easily proved by
induction on n that 1 ≤ ‖F‖ ≤ kn, so that this set is both nonempty and finite. The
number of caches misses is a well-defined and total function from F to N. The claim now
follows. �

66

David Ng Design and Analysis of Algorithms I

We now proceed to identify and solve trivial instances. We consider an instance of this
problem to be trivial when n = 1. If r1 ∈ C, then (null) is returned since it is the only
feasible solution and there are no cache misses at all. If r1 6∈ C, then α1 can be set to
be any element of the cache C. Thus, (α1) is a feasible solution and since r1 is the final
request, the number of cache misses will be one, regardless of the choice that is made.

Next, we consider a greedy strategy for nontrivial instances. Consider an instance of
the problem when n ≥ 2. Now if r1 ∈ C, then once again null must be chosen as the
first entry of the sequence of changes to be returned. This must be the greedy choice in
this case. Otherwise, if r1 6∈ C and there exists at least one element α of C such that
α 6∈ {r2, r3, ...rn} then one can set α1 to be α because this will never be needed again. If
there is more than one such value then it does not matter which one is picked. �

§18 November 14, 2017

§18.1 Computational Problems and Languages

So far, we have considered computational problems specified by pairs of preconditions
and postconditions with fairly elaborate structure. For instance, recall that an integer
n ≥ 2 is prime if the only positive integers k such that 1 ≤ k ≤ n such that n is divisible
by k are 1 and n. An integer n ≥ 2 is composite if n is not prime. An interesting
computational problem that involves primes can be specified by the precondition that
an integer n such that n ≥ 2 is given as input, and the postcondition that the smallest
positive prime p such that n is divisible by p is returned as output. We call this the
Smallest Prime Factor problem.

A decision problem is a computational problem with a true/false answer. It can be
specified more simply by describing an instance of the problem and the question being
answered.

Example 18.1 (Prime Factor in Range)

The instance of this problem is a pair of integers (n, k) such that 2 ≤ k ≤ n. The
question is whether there exists a positive prime p such that 2 ≤ p ≤ k and n is
divisible by p.

Decision problems will be considered for the rest of the course. These are simpler
in structure and arguably a bit easier to study. On the other hand, the difficulty of
more complex problems can often be related to the difficulty of corresponding decision
problems. For example, suppose we have an algorithm primeInRange that solves the
Prime Factor in Range problem. Then this could be used as a subroutine to produce an
algorithm like the following one, which solves the Smallest Prime Factor problem using a
variation of Binary Search.

integer smallestFactor(integer n)

{

integer low = 2

integer high = n

while (low < high)

{

integer mid = floor((low + high)/2)

if (primeInRange(n, mid))

{

high = mid

67

David Ng Design and Analysis of Algorithms I

}

else

{

low = mid + 1

}

}

return low

}

So far in this course, we have been studying computational problems whose instances
and outputs include elements of a variety of (sometimes complex) classes or types. Even
after moving from a more complex search problem, to a simpler decision problem, we
are still dealing with an ordered pair of positive integers with restrictions on their values
as an instance. Problems whose instances can include one or more elements of virtually
any type or class are generally called abstract decision problems. On the other hand, one
might also consider decision problems whose instances are strings in Σ for some finite
but nonempty alphabet Σ. These are called concrete decision problems.

An encoding of a set of instances of an abstract decision problem is what is needed to
relate an abstract decision problem to a concrete decision problem. Let I be the set of
instances of an abstract decision problem. For the Prime Factor in Range problem, I is the
subset of N×N including all ordered pairs (n, k) of integers such that 2 ≤ k ≤ n. Let Σ be
an alphabet. For this problem, it is advantageous to choose Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ; }.
Recall that if S is a set, then P (S) denotes the power set of S, which is the set of all
subsets of S.

Definition 18.2. An encoding of a set I of instances of an abstract decision problem
using an alphabet Σ is the total function

e : I → P (Σ∗) ,

satisfying the following additional properties:

1. For all α ∈ I, the set e(α) is nonempty so that every instance α is encoded by at
least one string in Σ∗.

2. For all α, β ∈ I such that α 6= β, then e(α) ∩ e(β) = {}. That is, no string in Σ∗

encodes more than one instance in I.

Continuing our example, for every integer n ∈ N such that n ≥ 2, let e(n) ∈ Σ∗

be the string of symbols giving the unpadded decimal representation. For instance,
e(4376) = 4376, which is the string in Σ∗ of length four. Note that for n ≥ 2, the length
of e(n) is linear in log2(n), not in n. That is, notice how the value 4376 is encoded using
only 4 characters. For an instance α = (n, k) ∈ I of the Prime Factor in Range problem,
we shall let the following be the encoding function.

e(α) = {e(n); e(k)}

We have slightly abused notation, but this is simply the set that includes the single string
of e(n); e(k) ∈ Σ∗.

An abstract decision problem A with a set I of instances and an encoding e : I → Σ∗

for some alphabet Σ can be used to define the following languages.

1. The Language of Instances is the set of all strings in Σ∗ that are encodings of
instances in I,

LA,I =
⋃
α∈I

e(α).

68

David Ng Design and Analysis of Algorithms I

2. The Language of Yes-Instances is the set LA,Y es of all strings in Σ∗ that are
encodings of Yes-instances of the decision problem A.

3. The Language of No-Instances is the set LA,No of all strings in Σ∗ that are
encodings of No-instances of the decision problem A.

Remark 18.3. It follows from these definitions that LA,Y es∪LA,No = LA,I and LA,Y es∩
LA,No = {}. Also, empty set characters look ugly, so I am just typing {} for empty set.

Example 18.4

We can now easily understand the the corresponding concrete decision problem of
the Prime Factor in Range problem. The instance is the string ω ∈ Σ∗, and the
question is whether ω ∈ LA,Y es. That is, does ω encode a Yes-instance of A.

§18.2 Turing Machines

Definition 18.5. A deterministic Turing machine is a 7-tuple,

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

1. Q is a finite and nonempty set of states.

2. Σ is the finite and nonempty input alphabet. Σ does not include the blank symbol
.

3. Γ is the finite and nonempty tape alphabet such that Σ ⊆ Γ, ∈ Γ, and Q∩Γ = {}.
Γ may also include a finite number of additional symbols that are not in Σ ∪ { }.

4. δ denotes the transition function that is a partial function

δ : Q× Γ→ Q× Γ× {L,R}.

The transition δ(q, σ) should be defined for every state q ∈ Q\{qaccept, qreject} and
for every symbol σ ∈ Γ. Neither δ(qaccept, σ) nor δ(qreject, σ) should be defined for
any symbol σ ∈ Γ.

5. q0 ∈ Q is the start state.

6. qaccept ∈ Q is the accept state.

7. qreject ∈ Q\{qaccept} is the reject state. This simply means that the reject state
cannot be the same as the accept state.

If this is still here when you are reading it, it means I have not yet added the review
section on Turing machines.

69

David Ng Design and Analysis of Algorithms I

§18.3 Complexity Class P

Consider a Turing machine M with input alphabet Σ that decides a language. that is, it
halts when executed on all strings in Σ∗. The time used by M on input ω ∈ Σ∗ is the
number of steps that M takes on input ω before it halts. The worst case running time of
M is a function TM : N→ N. For n ≥ 0, TM (n) is the maximum time used by M on any
input ω ∈ Σ∗ with length ‖ω‖ = n.

Now, let f : N→ N be an arbitrary function. Then TIME(f) or TIME(f(n)) is the
set of languages L such that L is decided by a Turing machine, with a worst case running
time of O(f). The complexity class P can now be defined as

P =
⋃
k∈N

TIME
(
nk
)
.

for the remainder of this course, we will consider abstract decision problems A and
encodings, whose language LA,I of instances are in P . We say that the corresponding
concrete decision problem is decidable deterministically in polynomial time if the language
LA,Y es of Yes-instances is in P as well.

§18.4 Cobham-Edmonds Thesis

Recall the Church-Turing thesis, which states that a problem is solvable using an
algorithm if and only if it can be solved using a deterministic Turing machine. On the
other hand, the Cobham-Edmonds thesis claims that an abstract decision problem is
efficiently solvable using an algorithm if and only if there is a reasonable or natural
encoding for the instances such that the corresponding decision problem can can solved
deterministically in polynomial time. In essence, it asserts that if abstract decision
problems have reasonable or natural encodings such that, when one of these encodings is
used, then the corresponding language of Yes-instances is in the complexity class P .

In general, it can be said that both the Church-Turing thesis and the Cobham-Edmonds
thesis are ill-posed. Various models of computation that were being compared during
the 1930?s that led to the formulation of the Church-Turing thesis did not all perform
computations on strings of symbols in an alphabet. It is necessary to introduce a
translation or encoding from one type of object to another, in order to compare these
models of computation. No attempt has been made so far to say which encodings of
the set of instances of a given abstract decision problem are reasonable or natural, but
these terms are included in the version of the Cobham-Edmonds thesis that is being
presented here. Evidence in support of this thesis includes proofs that other proposed
formal definitions of efficient computation, involving different models of computation,
are equivalent to the definition involving polynomial-time computation by deterministic
Turing machines. The next result described in this lecture can be viewed as evidence of
this thesis.

For any fixed integer k such that k ≥ 1, a k-tape Turing machine is a generalization
of a Turing machine that has k tapes, all with tape heads that can move independently.
For example, if q ∈ Q and Γ = {a, b, c, d, ?, }, then a configuration of a 3-tape Turing
machine might look like the state q with three tape heads on three different tapes each
with different strings comprised of characters in Γ. If ω = σ1σ2...σn ∈ Σ∗, then the start
configuration for ω is as follows.

• The machine is in its start state q0.

• The first tape is just like the tape of a standard one-tape deterministic Turing

70

David Ng Design and Analysis of Algorithms I

machine for this input. The leftmost n cells store the symbols σ1, σ2, ..., σn in order,
with all other cells storing . The tape head points to the leftmost cell on the tape.

• All other tapes are completely filled with , and their tape heads point to the
leftmost cell on the tape as well.

The transition function is now a partial function

δ : Q× Γk → Q× (Γ× {L,R, S})k.

For instance, let us consider the transition as follows.

δ(q, τ1, τ2, ..., τk) = (r, τ̂1, d1, τ̂2, d2, ..., τ̂k, dk),

where q, r ∈ Q, τ1, τ2, ..., τk, τ̂1, τ̂2, ..., τ̂k ∈ Γ, and d1, d2, ..., dk ∈ {L,R, S}. Then, if the
machine is in state q and the tape head for tape i points to a copy of τi, then for 1 ≤ i ≤ k,
the following changes would result after the next move.

• The state would change to state r.

• The copy of τi on the ith tape would be overwritten with a copy of τ̂i for 1 ≤ i ≤ k.

• For 1 ≤ i ≤ k, if di = L, then the ith head goes left one position unless it is already
at the leftmost tape. If di = R, then the tape head goes right one position, and if
di = S, the tape head does not move.

• The transition δ(q, τ1, τ2, ..., τk) should be defined for all states q ∈ Q\{qaccept, qreject}
and for all symbols τ1, τ2, ..., τk ∈ Γ.

• If q ∈ {qaccept, qreject}, then the transition δ(q, τ1, τ2, ..., τk) should not be defined
for any symbols τ1, τ2, ..., τk.

Much like regular Turing machines, the k-tape Turing machine K accepts ω if it is
possible to go from the start configuration to an accepting configuration which includes
qaccept using a finite number of moves. Alternatively, K rejects ω if it is possible to go
from the start configuration to a rejecting configuration which includes qreject using a
finite number of moves. Otherwise, we say that K loops on ω.

Claim 18.6. Let L ⊆ Σ∗.

1. If L is Turing-recognizable, then there is a k-tape Turing machine for some integer
k ≥ 1 that recognizes L.

2. Additionally, if L is Turing-decidable, then there is a k-tape Turing machine for
some integer k ≥ 1 that decides L. Furthermore, if f : N → N and L is Turing-
decidable using time f(n) for an input of length n in the worst case using a one-tape
Turing machine, then L is also Turing-decidable using a k-tape with f(n) time in
the worst case as well

Proof. It is easy to note that any regular one-tape Turing machine is also a k-tape
Turing machine when k = 1. The rest of the proof follows from the definition of
Turing-recognizable and Turing-decidable.

Claim 18.7. Let L ⊆ Σ∗, and let k be an integer such that k ≥ 1.

1. If there is a k-tape Turing machine M that recognizes L, then there is also a
one-tape Turing machine M̂ that recognizes L, so that L is Turing-recognizable.

71

David Ng Design and Analysis of Algorithms I

2. If there is a k-tape Turing machine M that decides L, then there is also a one-tape
Turing machine M̂ that decides L, so that L is Turing-decidable. Furthermore,
if f : N → N and M decides L using time at most f(n) in the worst case for an
input string with length n, then M decides L using time in O

(
max(f(n), n)2

)
in

the worst case.

Proof. To prove the above claim, a one-tape Turing machine M̂ that simulates the
execution of the k-tape Turing machine M can be described.

There can be more than one argument or simulation that can be used to establish the
equivalence of multi-tape Turing machines with one-tape Turing machines. In a similar
vein, the complexity class P is also provably unchanged if the model of computation is
replaced in its definition with either of the following, provided that the requirement that
only a polynomial number of steps can be used in the worst case.

• Deterministic Turing machines that use two-dimensional grids of cells to store data
instead of one-dimensional tapes.

• Random access machines that store symbols in an infinite sequence of registers
with indices in N, provided that we charge Θ(logm) steps to access or modify the
contents of register m, for m ∈ N. Note that this model is reasonably similar to a
real computer.

However, there is also evidence against the Cobham-Edmonds thesis, based on the
observation that P might be too restrictive. It is widely believed that there is no
deterministic polynomial-time algorithm for integer factorization. And, the language
of Yes-instances of the Prime Factor in Range problem is in P if and only if such an
algorithm exists. Indeed, proofs of security of various cryptographic protocols depend on
the assumption that these problems cannot be solved deterministically in polynomial
time. However, Shor?s algorithm is a quantum polynomial-time algorithm for integer
factorization. Thus, if (or when) quantum computation becomes feasible, then this might
lead to the conclusion that there are languages that are efficiently decidable that are not
in P .

The thesis may also be incorrect since P may contain too much. For instance, it can
be proved that there exists a language L ⊆ Σ∗ for some alphabet Σ such that there is
a deterministic Turing machine M that decides L using time in O

(
n1000

)
for an input

string with length n in the worst case, so that this language is in P , but there does not
exist any deterministic Turing machine that decides L using time in O

(
n999

)
in the worst

case! A reasonably strong argument can be made that a language like L is not efficiently
decidable in any practical sense.

§18.5 Historical Figures in Theory of Computation

Alan Mathison Turing was a British pioneering computer scientist, mathematician,
logician, cryptanalyst, philosopher, mathematical biologist, and marathon and ultra
distance runner. Turing is widely considered to be the father of theoretical computer
science and artificial intelligence. The ACM A. M. Turing Award is named after him.
The receipt of this award is generally considered to be the highest distinction in computer
science, as this is generally considered the Nobel Prize of Computing. During the Second
World War, Turing worked for the Government Code and Cypher School (GC&CS) at
Bletchley Part, Britain’s codebreaking center. Turing’s pivotal role in cracking intercepted
coded messages enabled the Allies to defeat the Nazis in many crucial engagements,

72

David Ng Design and Analysis of Algorithms I

including the Battle of the Atlantic. It is estimated that the work at Bletchley Park
shortened the war in Europe by between two to four years.

Alonzo Church was an American mathematician and logician who made major contribu-
tions to mathematical logic and the foundations of theoretical computer science. Church
was the developer of lambda calculus. Early evidence in support of the Church-Turing
thesis included a proof of the equivalence of Turing machines and lambda calculus as
computational models.

In 1964, Alan Cobham gave a talk that is often recognized as the birth of the complexity
class P . This talk, “The Intrinsic Computational Difficulty of Functions”, took place
during the Congress for Logic, Methodology and Philosophy of Science at the Hebrew
University of Jerusalem, which took place from August 26 to September 2, 1964. Jack
Edmonds is American computer scientist who was considering similar ideas at roughly
the same time. In a 1965 paper, “Paths, Trees, and Flowers”, he drew a distinction
between algorithms that increase in difficulty exponentially with the size of the input, and
those whose difficulty increases only algebraically. In particular he mentioned the graph
isomorphism problem, the complexity of which, along with that of integer factorization,
is known to belong to NP but not known to belong to either of the subsets P or
NP -complete.

§19 November 16, 2017

§19.1 Nondeterministic Turing Machines

Definition 19.1. A k-tape nondeterministic Turing machine is a machine,

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

1. Q,Σ,Γ, q0, qaccept and qreject are defined in the same way as for deterministic Turing
machines.

2. The transition function δ is now a total function

δ : Q× Γk → P
(
Q× (Γ× {L,R,C})k

)
.

Because qaccept and qreject are the halting states, this means δ(qaccept, σ1, σ2, ..., σk) =
δ(qreject, σ1, σ2, ..., σk) = {} for all symbols σ1, σ2, ..., σk ∈ Γ.

Computation of a nondeterministic Turing machine on a string ω ∈ Σ∗ can be modeled
as a tree with configurations of the machine at its nodes. The initial configuration of
M on input ω is the configuration at the root of this tree. If a configuration C of M
has the machine in state q, with symbols σ1, σ2, ..., σk visible on its tapes, then the
number of children of the node with this configuration is equal to the size of the set
δ(q, σ1, σ2, ..., σk), and there is node for the configuration obtained by applying each of
the transitions in this set.

Thus, each path down the tree starting from the root corresponds to one possible
computation of M on its input string (corresponding to a series of guesses about which
possible transition to apply). M accepts a string ω if and only if there exists at least
one path leading to a configuration with M in its accepting state qaccept. M recognizes a
language L ⊆ Σ∗ if L is the set of strings in Σ∗ that M accepts. M decides a language
L ⊆ Σ∗ if M recognizes L, and the tree of configurations for M on input ω is finite for
every string ω ∈ Σ∗.

73

David Ng Design and Analysis of Algorithms I

The time used by M on input ω ∈ Σ∗ is defined to be the depth of the tree of
configurations for M on input ω. That is, it is the maximum of the length of any path
from the root down to any leaf in this tree. If we let f : N → N, then M decides L in
time f (‖ω‖) if M decides L, and the time used by M on input ω is at most f (‖ω‖) for
every string ω ∈ Σ∗. We can define NTIME(f) as the set of languages L ∈ Σ∗ such that
there exists a nondeterministic Turing machine M that decides L using time in O(f).

Consider again the Prime Factor in Range problem. Additionally, we introduced two
additional problems.

Example 19.2 (Verification of Inequality)

The instance is a pair (a, b) of non-negative integers a and b. The question is if a ≤ b.
It can be argued that there is a 2-tape deterministic Turing machine that solves the
associated concrete decision problem using a linear number of steps.

Example 19.3 (Multiplication Verification)

The instance is the 3-tuple (a, b, c) of non-negative integers. The question is whether
a = bc. It can be shown that there is a 6-tape Turing machine that solves the
associated concrete decision problem using a quadratic number of steps.

We shall add the dotted digits 0̇, 1̇, 2̇, 3̇, 4̇, 5̇, 6̇, 7̇, 8̇, 9̇ to our machine’s tape alphabet.
These can be used to temporarily mark the leftmost cell of each tape by writing the
dotted copy of the digit onto the cell instead of the normal digit. This will be used by
the nondeterministic Turing machine to be described.

Consider a 9-tape nondeterministic Turing machine MF whose input alphabet Σ is
the same one used to encode instances of the Prime Factor in Range problem. On input
ω ∈ Σ∗, MF does the following.

1. If ω does not encode a pair (n, k) of integers such that 2 ≤ k ≤ n, then reject.

2. Write a copy of the encoding e(n) and the separator ; onto the second tape.

3. Nondeterministically guess an encoding of an integer m ≥ 2. Use the copy of e(k)
on the first tape to ensure that the encoding e(m) of m is no longer than the
encoding of k. Write the encoding of m onto the second tape following the copy of
; and onto the third tape.

4. Write a copy of ; and the encoding e(k) of k onto the third tape so that this stores
an instance of the Verification of Inequality problem. Move the tape head for the
third tape back to the beginning and unmark the leftmost symbol. Using the third
and fourth tapes, check whether m ≤ k. Reject if this is not true.

5. Write another ; onto the second tape. Nondeterministically guess a number l ≥ 1,
using the copy of e(n) on the first tape to make sure that the encoding of l is no
longer than the encoding of n. Write the encoding of l onto the end of the second
tape. Move the tape head for this tape back to the left and unmark the tape.

6. The second tape now stores an encoding of an instance of the Verification of
Multiplication problem. Use this tape and tapes five to nine to check whether
n = ml. Accept if this is true and reject otherwise.

74

David Ng Design and Analysis of Algorithms I

Claim 19.4. MF decides the language of encodings of Yes-instances of the Prime Factor
in Range problem using the encoding scheme previously introduced.

Proof. Suppose that ω ∈ Σ∗ encodes a Yes-instance of the Prime Factor in Range problem
(with n and k such that 2 ≤ k ≤ n). Then there must exist a prime p such that 2 ≤ p ≤ k
and n is divisible by p. If MF guesses p as the integer m at step 3 and guesses the integer
n/p as the integer l at the fifth step, then all tests made by this algorithm are passed
and ω is accepted at the sixth step as required.

Suppose instead that ω ∈ Σ∗ does not encode a Yes-instance of the Prime Factor in
Range problem. If ω does not encode an instance of the Prime Factor in Range problem
at all, then ω is rejected at the first step. Otherwise, ω must encode a pair of integers
n and k such that 2 ≤ k ≤ n, but there is no positive integer prime p such 2 ≤ p ≤ k
and n is divisible by p. It follows that there is no integer m such that 2 ≤ m ≤ k and n
is divisible by m (otherwise, any prime divisor p of m would be a suitable prime that
we were looking for). The only way to avoid rejecting the input string at the fourth line
is to have guessed an integer m at line 3 such that 2 ≤ m ≤ k. However, n cannot be
divisible by m, so it is impossible to choose an integer l at line 5 such that n = ml. If
the sixth line is reached at all (which is the only way that ω could be accepted), then it
must be rejected during this step as required

Claim 19.5. The time used by MF on input ω ∈ Σ∗ is in O
(
‖ω‖2

)
Proof. Consider the time required for each of the steps implemented by this Turing
machine when it is executed on an input string ω ∈ Σ∗. The number of steps used to
carry out each of the first two steps is in O(‖ω‖). Since the copy of e(k) is being used to
make sure that the encoding e(m) of m is no longer than the encoding of k, the third
step uses O(‖ω‖) steps as well. Since the Verification of Inequality problem can be solved
deterministically in linear time, the fourth step can be carried out using O(‖ω‖) steps.
Because the copy of the encoding of e(n) on the first tape is being used to make sure
that the encoding of the guessed number l is no longer than this encoding, the fifth
step uses O(‖ω‖) steps. Finally, since the Verification of Multiplication problem has a
quadratic-time deterministic solution, the sixth step can be carried out using O

(
‖ω‖2

)
steps. It follows that the computation tree for the execution of MF has depth in O

(
‖ω‖2

)
as required.

We say that a concrete decision problem (whose language of instances is in P) is
decidable nondeterministically in polynomial time if there is a nondeterministic Turing
machine that decides its language of Yes-instances, using time at most polynomial in the
length of the input string in the worst case. It follows from the above that the concrete
decision problem corresponding to the Prime Factor in Range problem, with the encoding
scheme previously described, is decidable nondeterministically in polynomial time.

§19.2 Verification of a Language

Consider a language L ⊆ Σ∗. Let ΣC be a possibly different alphabet, and suppose that
the symbol # 6∈ Σ ∪ ΣC , and let

Σ̂ = Σ ∪ ΣC ∪ {#}.

Then the ordered pair consisting of a string ω ∈ Σ∗ and a string µ ∈ Σ∗C can be represented
using the string

ω#µ ∈ Σ̂∗,

which includes exactly one #.

75

David Ng Design and Analysis of Algorithms I

Definition 19.6. A verifier for a language L is an algorithm (or deterministic Turing
machine M) with the following properties.

• The input alphabet for M is an alphabet Σ̂ defined previously.

• M decides a language L̂ that is a subset of the set

{ω#µ|ω ∈ Σ∗ and µ ∈ Σ∗C}.

• For every string ω ∈ Σ∗, ω ∈ L if and only if there exists at least one string µ ∈ Σ∗C
such that ω#µ ∈ L̂.

If µ ∈ Σ∗C such that ω#µ ∈ L̂, then µ is referred to as the certificate for ω.

Thus, we can arrive at another definition of NTIME(f) for a function f : N→ N. A
language L ⊆ Σ∗ is in NTIME(f) if there exists a verifier M such that the number of
steps used by M on any string ω#µ (where ω ∈ Σ∗ and µ ∈ Σ∗C) is in O(f(‖ω‖)).

Remark 19.7. The bound on the number of steps used by M given above depends on
the length of the string ω ∈ Σ∗, and not on the rest of the input supplied to the verifier
M . In particular, it does not depend on the length of µ. We do not worry about (or
constrain) the number of steps used by M when its input does not have the form ω#µ.

Once again, consider a Yes-instance of the Prime Factor in Range problem. We could
arrive at a certificate for this Yes-instance as being the encoding of a pair of positive
integers m and l such that 2 ≤ m ≤ k and n = ml. As noted in the proof of the
first claim, such integers exist if and only if n and k are part of a Yes-instance of the
Prime Factor in Range problem. Suppose we set ΣC = ΣD and define the encoding
from possible certificates to be the function mapping the ordered pair (m, l) to the set
of strings (containing one string) of {e(m); e(l)}. Note that the length of the string
e(m); e(l) is less than or equal to the length of the string ω = e(n); e(k) encoding the
integers n and k. Now, consider an 11-tape deterministic Turing machine MV that does
the following on input ω ∈ (ΣD ∪ {#})∗.

1. If ω does not begin with a string µ ∈ Σ∗D followed by a #, then reject. Otherwise
write another copy of µ onto the second tape (with leftmost cells marked using
dotted copies for all steps to follow).

2. If µ does not encode an instance of the Prime Factor in Range problem, including
a pair of integers n and k such that 2 ≤ k ≤ n, then reject.

3. ω does not continue (then end) with a string ν ∈ Σ∗D such that ‖ν‖ ≤ ‖µ‖ then
reject. Otherwise write a copy of ν onto the third tape.

4. If ν does not encode a pair of integers m and l such that m ≥ 2 and l ≥ 1, then
reject.

5. Use the strings on the second and third tapes to write e(m); e(k) onto the fourth
tape. Move the tape head back to its leftmost cell, unmarking the leftmost symbol
on the tape.

6. Use the fourth and fifth tapes to check whether m ≤ k. Reject if this is not the
case.

76

David Ng Design and Analysis of Algorithms I

7. Use the strings on the second and third tapes to write e(n); e(m); e(l) onto the
sixth tape. Move the tape head back to the leftmost cell, unmarking the leftmost
symbol on the tape.

8. Use tapes six to eleven to decide whether n = ml. Accept if this is true and reject
if this is false.

Claim 19.8. MV is a verifier for the language of Yes-instances of the Prime Factor in
Range problem using the certificates that have been described above.

Proof. Consider an execution of MV on a string ω ∈ (ΣD ∪ {#})∗. If ω does not have
the form µ#ν, where µ, ν ∈ Σ∗D and the length of ν is less than or equal to the length
of µ, then this is detected and rejected as required at lines 1 or 3. If µ does not encode
an instance of the Prime Factor in Range problem including a pair of integers n and k
such that 2 ≤ k ≤ n, then this is detected and ω is rejected, as required at the second
step. If ν does not encode a pair of integers m and l such that m ≥ 2 and l ≥ 1, then ν
cannot possibly be a certificate for µ, so this is detected and ω is rejected as required
at the fourth step. If m > k so that ν cannot possibly be a certificate for µ, then ω is
rejected at the sixth step. If ω has not been rejected for any of the above reasons, then ν
is a certificate for µ and should be accepted if and only if n = ml. thus, the eight step
completes and the claim follows. It can also be shown that MV executed on ω = µ#ν
where µ, ν ∈ Σ∗D takes at most a quadratic number of steps with respect to µ.

§19.3 Verification Process

The following process has now been used to show that a language L ⊆ Σ∗ of Yes-instances
of a concrete decision problem can be verified deterministically using time that is at most
polynomial in the length of the input string in the worst case.

1. Describe a certificate for a Yes-instance of the decision problem being considered.
This is often easy to discover because it is often mentioned in the specification
of requirements for the decision problem being considered. Check or prove that
every Yes-instance of this problem has at least one certificate, and that there are
no No-instance for this problem that have any certificates.

2. Describe an alphabet ΣC and an encoding e(C)→ P (Σ∗C) from the set of (possible)
certificates for Yes-instances of this problem, which we have now defined, to sets of
strings in Σ∗C . Check or prove the following:

a) Every (possible) certificate has an encoding so that e(γ) 6= {} for all γ ∈ C.

b) No string encodes more than one instance. Thus, if γ1, γ2 ∈ C and γ1 6= γ2,
e(γ1) ∪ e(γ2) = {}.

c) Every Yes-instance has at least one short certificate. That is, there is a
polynomial function p : N→ N such that for every string µ ∈ Σ∗ encoding a
Yes-instance of the decision problem being considered, there is at least one
string ν ∈ Σ∗C encoding a certificate such that ‖ν‖ ≤ p(‖µ‖).

3. Describe a verification algorithm that uses the certificates identified that satisfy
the bound on certificate length described above. The following structure of an
algorithm is recommended.

a) Check for and reject any input string ω ∈ (Σ∪ΣC ∪ {#})∗ that does not even
begin with a string µ ∈ Σ∗, followed by a #. This should be easy for the
algorithm to do using time that is linear in the length of its input string.

77

David Ng Design and Analysis of Algorithms I

b) Check for and eliminate all input strings ω that do begin in this way, but such
that the prefix µ ∈ Σ∗ does not encode an instance of the decision problem
being considered. This step will not be difficult as we are only considering
languages of instances that are decidable deterministically in polynomial time.

c) Compute the binary (or decimal) representation of p(‖µ‖) where µ ∈ Σ∗ as
described above. In this course, we will be allowed to use the fact that it is
possible to perform such a computation deterministically in polynomial time.
Check the input string ω and reject it unless it continues, and ends, with a
string ν ∈ Σ∗C such that the ‖ν‖ ≤ p(‖µ‖).

d) Finally, check the string ν that has now been obtained. Confirm that it a valid
encoding of a possible certificate for this problem and that it satisfies all the
properties needed to establish that µ encodes a Yes-instance of the decision
problem being considered. Accept if this is the case and reject otherwise.

4. Sketch a proof that the Turing machine (or somewhat higher level algorithm) that
we have now described really is a verifier for the language of Yes-instances of the
decision problem considered.

5. Sketch a proof that if the Turing machine (or algorithm) is executed with an input
string ω ∈ (Σ∪ΣC ∪{#})∗ with the form µ#ν where µ ∈ Σ∗ and ν ∈ Σ∗C , then the
number of steps taken before the Turing machine (or algorithm) halts is a bound
function that is at most polynomial in ‖µ‖ (not ‖ω‖) in the worst case.

§19.4 Equivalence of Models

Definition 19.9. A function f : N→ N is time-constructible if there is a deterministic
Turing machine that maps the string 1n to the binary representation of f(n) (by writing
the second string onto another tape) using time in O(f(n)). That is, f(n) can be
constructed from n by a Turing machine in the time of order f(n). The set of time-
constructible functions include those that generally occur as bounds for running time,
including nk for any integer k ≥ 1, dn log2 ne, dn

√
ne, and cn for any integer c ≥ 2.

Lemma 19.10

It is possible to set a binary counter to zero, and then set it to a given value m by
adding one to it m times. Or, we can decrement the value of a binary counter from
m down to zero by subtracting one m times. This can all be done using O(m) steps
(even with a Turing machine).

Proof. This is a application of the algorithm analysis technique of amortized analysis.
Notice that one-half of the additions (or subtractions) require only a single bit of the
counter to be modified, one-quarter of the additions (or subtractions) require only two
bits of the counter to be modified, one-eighth of the additions (or subtractions) require
only three bits of the counter to be modified, etc. The most expensive addition (or
subtraction) requires a number of steps linear in l = blog2mc.

This implies that the total number of steps used for either of the operations described
in the lemma is at most linear in

l∑
i=0

mi

2i
< m

∑
i≥1

i

2i
.

78

David Ng Design and Analysis of Algorithms I

If S =
∑

i≥1
i
2i

, then 2S =
∑

i≥1
i

2i−1 =
∑

i≥0
i+1
2i

, so that

S = 2S − S = 1 +
∑
i≥1

1

2i
= 2,

implying that the above step bound is linear in m as required.

It follows that the function f(n) = n is time constructible. This is useful for proving the
following result.

Claim 19.11. If f : N→ N is a time-constructible function such that f ∈ Ω(n), then the
definitions of NTIME(f) that have been given (one involving nondeterministic Turing
machines, another involving verifiers) are equivalent. That is, they define the same set of
languages L ⊆ Σ∗.

Proof. This can be shown.

§19.5 Complexity Class NP

Definition 19.12. The complexity class NP is defined as

NP =
⋃
k≥1

NTIME
(
nk
)
.

Using the definition of NTIME(f) involving verifiers, the following propositions can
be made.

Proposition 19.13

TIME(f) ⊆ NTIME(f) for every time-constructible function f : N→ N such that
f(n) ∈ Ω(n).

Proof. Suppose there exists a deterministic Turing machine M that decides a language
L ⊆ Σ∗ using O(f(n)) steps for input strings with length n in the worst case. Then a
verifier can simply use a given string ω#µ to make a copy of ω on another tape (which
will now be treated as the input tape) and simulate the execution of M using time in
O(f(n)) as well.

Proposition 19.14

If the function f : N→ N is time-constructible, f(n) ∈ Θ(n), and L ∈ NTIME(f),
then there is a deterministic Turing machine that decides L using O(cf(n)) steps
(given an input string ω ∈ Σ∗ with length n = ‖ω‖) for some constant c ≥ 1.

Proof. Suppose M̂ is a verifier for L using at most ĉf(n) steps on input ω of length n.
Suppose that the alphabet ΣC for this verifier (for the production of certificates) has a
size at most d.

Every string in L with length n must have a valid certificate with length at most
ĉf(n)− 1. That is, the verifier will not have time to read more than the first ĉf(n)− 1
symbols in longer certificates because it accepts before this happens. A decision is made
as soon as the prefix, with length ĉf(n)− 1 has been read, so any prefix of a longer valid
certificate with this length must also be a valid certificate itself.

79

David Ng Design and Analysis of Algorithms I

Consider a deterministic Turing machine that starts out by computing the binary
representation of f(n) (which can be done efficiently, since f is time-constructible), and
then iterates over all possible certificates of the verifier with length at most cf(n)− 1. It
simulates the execution of the verifier using the input string and every such certificate
until a valid certificate is found (so that the deterministic Turing machine should accept
the input), or all such certificates have been confirmed to be invalid (so the input should
be rejected). Since ΣC has size d, the number of strings in Σ∗ with length at most
ĉf(n)− 1 is

ĉf(n)−1∑
i=0

di =
dĉf(n)−1 − 1

d− 1
≤ dĉf(n).

Since f(n) ∈ Ω(n), the number of steps used by this entire simulation can be shown to
be in O

(
dĉf(n)f(n)

)
in the worst case. We now set c to be a constant that is strictly

greater than dĉ to complete the proof.

Corollary 19.15

P ⊆ NP ⊆ EXPTIME =
⋃
k≥1

TIME
(

2n
k
)
.

This is essentially all that has been proven about the relationship between P and
NP .

Conjecture 19.16 (Cook’s Conjecture).

P 6= NP.

§20 November 21, 2017

§20.1 Computing Functions

Definition 20.1. Let k be an integer such that k ≥ 2. A k-tape Turing machine that
computes a function can be modeled as a 7-tuple

M = (Q,Σ1,Σ2,Γ, δ, q0, qhalt),

where

• Q is the set of states.

• Σ1 is the input alphabet that does not include .

• Σ2 is the output alphabet that does not include .

• Γ is the tape alphabet such that Q ∩ Γ = {}, and Σ1 ∪ Σ2 ∪ { } ⊆ Γ.

• q0, qhalt ∈ Q, where q0 is the start state and qhalt is the halt state.

• δ : Q× Γk → Q× (Γ×{L,R, S})k is the transition function. As with deterministic
Turing machines that recognize languages, let us require that this is a partial
function such that δ(q, σ1, σ2, ..., σk) is defined whenever q ∈ Q, σ1, σ2, ..., σk ∈
Γ, and q 6= qhalt. ON the other hand, δ(qhalt, σ1, σ2, ..., σk) is undefined for all
σ1, σ2, ..., σk ∈ Γ.

80

David Ng Design and Analysis of Algorithms I

• For a string ω ∈ Σ∗, the initial configuration of M on input ω is the same as it
would be for a deterministic Turing machine that was deciding whether ω belongs
to a certain language. The first tape, which store the copy of ω when execution
begins is called the input tape.

• Tape k is the output tape. If the execution of M on input ω halts, then a string
µ ∈ Σ2∗ should be written onto the leftmost cells of the output tape, with the
output tape head located at the leftmost cell of the tape.

• M is computes a function f : Σ∗1 → Σ∗2. For all ω ∈ Σ∗1, if the execution of M on
input ω ever halts, then f(ω) is defined and equal to the string µ ∈ Σ∗2 that has
been written onto the output tape. Otherwise, f(ω) is undefined.

§20.2 Reducibilities

Definition 20.2. A reducibility is any relation �Q between languages (possibly over
different alphabets) such that L �Q L for every language L ⊆ Σ∗ (and over every alphabet
Σ), and for all languages L1 ⊆ Σ∗1, L2 ⊆ Σ∗2, and L3 ⊆ Σ∗3, if L1 �Q L2 and L2 �Q L3,
then L1 �Q L3. That is, the relation is reflexive and transitive.

Definition 20.3. For languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, a many-one reduction from
L1 to L2 is a well-defined total function f : Σ∗1 → Σ∗2 such that

ω ∈ L1 ⇐⇒ f(ω) ∈ L2,

for every string ω ∈ Σ∗1, that is computed by some Turing machine M . L1 is many-one
reducible to L2,

L1 �M L2,

if there exists a many-one reduction from L1 to L2.

Proposition 20.4

�M is a reducibility. To prove this, we need to show that L �M L for every language
L ⊆ Σ∗ (and over every alphabet Σ), and for all languages L1 ⊆ Σ∗1, L2 ⊆ Σ∗2, and
L3 ⊆ Σ∗3, if L1 �M L2 and L2 �M L3, then L1 �M L3.

Proof. Let L ⊆ Σ∗ and consider the function f : Σ∗ → Σ∗ such that f(ω) = ω for every
string ω ∈ Σ∗. A deterministic Turing machine M (computing a function) that copies
its input onto its output tape, moves its output tape head back to the leftmost cell and
halts after that is a deterministic Turing machine that computes f . Furthermore, f is
a well-defined total function from Σ∗ → Σ∗ such that ω ∈ L ⇐⇒ f(ω) ∈ L for every
string ω ∈ Σ∗. Thus, M is a many-one reduction from L to L as required.

To prove the second part, suppose that L1 ⊆ Σ∗1, L2 ⊆ Σ∗2, and L3 ⊆ Σ∗3. Additionally,
suppose that L1 �M L2 and L2 �M L3. Then there exists a Turing machine M1

computing a well-defined total function f1 : Σ∗1 → Σ∗2 such that ω1 ∈ L1 ⇐⇒ f1(ω1) ∈ L2

for every string ω1 ∈ Σ∗1. Then there also exists a Turing machine M2 computing
f2 : Σ∗2 → Σ∗3 such that ω2 ∈ L2 ⇐⇒ f2(ω2) ∈ L3 for every ω2 ∈ Σ∗2. Now, let f = f1 ◦f2

so that f is a well-defined total function from Σ∗1 → Σ∗3 where f(ω) = f2(f1(ω)).

ω ∈ L1 ⇐⇒ f1(ω) ∈ L2 ⇐⇒ f(ω) = f2(f1(ω)) ∈ L3,

81

David Ng Design and Analysis of Algorithms I

for every string ω ∈ Σ∗1. Now, consider a Turing machine M that does the following given
a string ω ∈ Σ∗1 as input. First, it uses a copy of M1 to compute f1(ω). Note that the
output tape of M1 is exactly the input to M2 executed on f1(ω). Now, using a copy of
M2, it computes f(ω) = f2(f1(ω)) using the output tape of M1 as output and additional
tapes as required. The output tape of M2 is used as the output tape of M , as required.
It follows that L1 �M L3 as required.

Definition 20.5. For languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, a polynomial-time many-one
reduction from L1 to L2 is a well-defined total function f : Σ∗1 → Σ∗2 for every ω ∈ Σ∗1
where f is computed by some Turing machine M . Additionally, there exists a polynomial
function p : N → N such that the number of steps used by M on input ω is at most
p(‖ω‖) for every string ω ∈ Σ∗1. L1 is polynomial-time many-one reducible to L2,

L1 � P,ML2,

if there exists a polynomial-time many-one reduction from L1 to L2.

82

David Ng Design and Analysis of Algorithms I

Example 20.6

Recall that an integer n ≥ 2 is composite if there is at least one other integer k such
that 2 ≤ k ≤ n where n is divisible by k. Consider the abstract decision problem
Composite with instances being integers n ≥ 2, and the question being whether n is
composite. Now, let I1 be the set of instances of the Composite problem (integers
greater than or equal to 2, and I2 be instances of the Prime Factor in Range problem
(ordered pairs (n, k)). Now, consider the function f̂ : I1 → I2 such that for every
integer n ≥ 2,

f̂(n) =

{
(3, 2) if n = 2,

(n, n− 1) if n ≥ 3.

Then, f̂(α) ∈ I2 for every element α of I1, so f̂ is a total function form I1 to I2.
After considering the special case of n = 2, we can confirm that if α is a Yes-instance
of the Composite problem, then f̂(α) is a Yes-instance of the Prime Factor in Range
problem. Similarly, if α was a No-instance of Composite, then f̂(α) is a No-instance
of the Prime Factor in Range problem.

Recall that instances of the Prime Factor in Range problem can be encoded as
strings over an alphabet ΣD. The empty string λ does not encode an instance of
the problem at all, so it certainly does not belong to the language of encodings
of Yes-instances of this problem, which we call LF . The same alphabet ΣD can
be used to encode instances of the Composite problem for integers n ≥ 2 using
their unpadded decimal representations. Let us call the language of encodings of all
instances of this problem LC,I ⊆ Σ∗D and let us call the language of Yes-instances
LC,Y es. Clearly, LC,I ∈ P , as it is possible to decide whether a string ω ∈ Σ∗D is
an unpadded decimal representation of some integer n ≥ 1 using linear time with
respect to the length of the input string. thus, we set Σ1 = Σ2 = ΣD and define the
total function f : Σ∗1 → Σ∗2 as follows.

• If ω ∈ Σ∗1 and ω ∈ LC,I so that ω encodes some integer n ≥ 2, then f(ω) is the

encoding of f̂(n) as described previously.

• On the other hand, if ω 6∈ LC,I , then f(ω) = λ.

It follows that for all ω ∈ Σ∗1,

ω ∈ LC,Y es ⇐⇒ f(ω) ∈ LF .

As noted above, LC,I ∈ P , so one can decide which case to apply in order to
decide how to compute f(ω) for a given string ω ∈ Σ∗1. Given an unpadded
decimal representation ω ∈ Σ∗1 of n, one can easily compute the unpadded decimal
representation of an integer n− 1 for n ≥ 3, or check whether n = 2 in the special
case. This can be accomplished using a deterministic multi-tape Turing machine
in linear time with respect to ‖ω‖. The function f can therefore be computed
deterministically in polynomial time. It follows that LC,Y es �P,M LF .

§20.3 Polynomial-Time Many-One Reduction Process

The following process is used to show that the language of Yes-instances of one decision
problem P1 is polynomial-time many-one reducible to the language of Yes-instances of
another decision problem P2.

83

David Ng Design and Analysis of Algorithms I

1. Let I1 be the set of instances of the decision problem P1 and let I2 be the set of
instances of the decision problem P2. Describe a total function f̂ : I1 → I2 such
that for all α ∈ I1, α is a Yes-instance of P1 if and only if f̂(α) is a Yes-instance of
P2. Show that this is true if it is not obvious.

2. Consider encodings of the sets of instances I1 and I2 using alphabets Σ1 and Σ2

respectively. These will generally be defined in problems assigned in this course.
Confirm that the language L1,I of encodings of instances of the first decision problem
P1 is in the complexity class P . For problems in this course, this will either be easy
to prove or we will be allowed to assume it. Choose some string µ ∈ Σ∗2 that does
not encode a Yes-instance of the second decision problem. It is often possible to
choose the empty string λ.

3. Let L1,Y es ⊆ Σ∗1 be the language of encodings of Yes-instances of decision problem
P1, and let L2,Y es ⊆ Σ∗2 be the language of encodings of Yes-instances of decision
problem P2. Consider a total function f : Σ∗1 → Σ∗2 such that for all ω ∈ Σ∗1,

• If ω ∈ L1,I so that ω encodes some instance α ∈ I1 of decision problem P1,
then f(α) is an encoding of the instance f(α) of P2 for the the function
f : I1 → I2 described previously.

• On the other hand, if ω 6∈ L1,I , then f(ω) = µ, the string described previously
that does not encode a Yes-instance of the second decision problem.

Now, it follows that for all ω ∈ Σ∗1,

ω ∈ L1,Y es ⇐⇒ f(ω) ∈ L2,Y es.

4. Describe an algorithm that can be used to compute f . Show that it is correct
and that this function uses a number of steps that is at most polynomial in the
length of the input string in the worst case. In recent examples, multi-tape Turing
machines have been used to describe these algorithms. This can take a long time
but is reasonably safe. It is possible to describe algorithms in other ways, like
give pseudocode, but we need to be careful to avoid using instructions that cannot
actually be carried out deterministically in polynomial time. For problems in this
course, a list of instructions that one may safely assume to be implementable in
polynomial time will sometimes be given.

Definition 20.7. A language L ⊆ Σ∗ is NP -hard if it is hard for the complexity class
NP with respect to polynomial-time many-one reductions. L is NP -complete if it
is complete for the complexity class NP with respect to polynomial-time many-one
reductions.

Remark 20.8. It would follow that if a language L ⊆ Σ∗ is NP -complete, and it was
the case that P 6= NP , then L 6∈ P . However, we do not know whether P = NP .
Our objective is to find out whether this is the case.

§20.4 Historical Figures in Theory of Computation Cont’d

Oracle reductions were used by Turing to prove a significant result about the undecidability
of a problem, when his Turing machine model was proposed. These are often called
Turing reductions in his honour. Emil Post was a Polish-born American mathematician
and logician. He was the first person to make use of many-one reductions, in a paper
published in 1944.

84

David Ng Design and Analysis of Algorithms I

Stephen Cook is an American-Canadian computer scientist. In his 1971 paper, The
Complexity of Theorem-Proving Procedures, a proof that a problem concerning sat-
isfiability of Boolean formulas was complete for NP with respect to polynomial-time
oracle-reducibility was given. This was the first problem that was not completely artifi-
cial, with NP-completeness that could be established. Consequently, this was a major
result at the time and is still considered to be one today. As a result, polynomial-time
oracle-reductions are also called Cook reductions in recognition of this. Professor Cook
won the ACM Turing Award in 1982, and was named as an Officer of the Order of
Canada in 2015.

Richard Manning Karp is an American computer scientist. In his 1972 paper, Reducibil-
ity Among Combinatorial Problems, Professor Karp noted that the problem proved by
Stephen Cook to be complete for NP with respect to polynomial-time oracle reductions,
was complete for NP with respect to polynomial-time many-one reductions as well.
Professor Karp also proved numerous other problems to be NP -complete in this sense,
in that paper. Consequently, polynomial-time many-one reductions are often called Karp
reductions in his honour. Professor Karp won the Turing award in 1985 in recognition of
this and various other contributions.

§21 November 23, 2017

§21.1 NP-Completeness

Recall that a language is NP -hard if it is hard for NP with respect to polynomial-
time many-one reductions, and NP−complete if it is complete for NP with respect to
polynomial-time many-one reductions. It is relatively simply to prove the existence of an
NP -complete problem.

Example 21.1

Consider the set of strings over an alphabet ΣNTM that encodes

• A nondeterministic Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject).

• A string ω ∈ Σ∗ where Σ is the input alphabet for M .

• A non-negative integer k encoded in unary.

such that there exists an accepting computation of M on input ω including at
most k steps. After reviewing the encoding for a nondeterministic Turing machine,
and the basics of universal Turing machines, it can be shown that this language is
NP -complete.

While the above example is an NP -complete problem, it is not clear how this rather
artificial language can be used to identify other more interesting languages as NP -
complete. The contribution of the Cook-Levin Theorem is that it establishes the existence
of a less artificial NP -complete language that can be used to identify others.

First, we consider the Boolean Satisfiability problem that is the problem of determining
if there exists an interpretation that satisfies a given Boolean formula. In other words, it
asks whether the variables of a given Boolean formula can be consistently replaced by
the values true or false in such a way that the formula evaluates to true. If this is the
case, the formula is called satisfiable. On the other hand, if no such assignment exists,
the function expressed by the formula is false for all possible variable assignments, and

85

David Ng Design and Analysis of Algorithms I

the formula is unsatisfiable. Boolean Satisfiability is the first problem that was proven to
be NP-complete

Example 21.2

The formula a ∧ ¬b is satisfiable because one can find the values a = true and
b = false, which make a ∧ ¬b = true. In contrast, a ∧ ¬a is unsatisfiable.

Theorem 21.3 (Cook-Levin Theorem)

The Boolean Satisfiability problem is NP -complete. That is, any problem in NP
can be reduced in polynomial time by a deterministic Turing machine to the problem
of determining whether a Boolean formula is satisfiable.

Proof. Proof is too long, and not going to help me score higher on the final, so I am
leaving it out for now. I will likely include it later.

Remark 21.4. An important consequence of this theorem is that if there exists a
deterministic polynomial time algorithm for solving Boolean satisfiability, then every NP
problem can be solved by a deterministic polynomial time algorithm. The question of
whether such an algorithm for Boolean satisfiability exists is thus equivalent to the P
versus NP problem, which is widely considered the most important unsolved problem in
theoretical computer science.

§21.2 Historical Figures in Theory of Computation Cont’d

Leonid Levin is a Soviet-American computer scientist who also made an extremely
important contribution to complexity theory. In the 1970’s, relations between the east
and the west were so strained that information about the mathematical sciences did not
get communicated very often or effectively, between one side and the other. Consequently
it was not known in the west, until years later, that Professor Levin had discovered
the existence of reasonably natural problems that are NP -complete, independently of
Professor Cook. The timing is so close that it is not clear who knew what first. Professor
Levin is also noted for significant contributions concerning average-case complexity. He
was awarded the Knuth Prize in 2012 for these contributions. The result that was called
Cook’s Theorem concerning NP -completeness in older publications is now commonly
called the Cook-Levin Theorem in recognition of his independent discovery of an extremely
important fact about computational complexity.

§22 November 28, 2017

§22.1 Establishing NP-Completeness

Suppose that we are given a language L ⊆ Σ∗ and wish to prove that this language
is NP -complete. This will usually be the Yes-instance of some decision problem. The
following procedure will be used to show that a language is NP -complete.

1. Prove that L ∈ NP . Refer to process described in previous lectures to show this.

2. Prove that L is NP -hard.

86

David Ng Design and Analysis of Algorithms I

a) Choose some language L̂ ⊆ Σ̂∗ that is already known to be NP -complete. If
possible, choose some language L̂ that is similar to L.

b) Prove that L̂ �P,M L. That is, show that L̂ is polynomial-time many-one
reducible to L. Refer to the process described in previous lectures to show
that L̂ �P,M L.

3. Note that it now follows from the definition of NP -completeness that L is NP -
complete.

§23 November 30, 2017

§24 December 5, 2017

§24.1 Additional NP-Complete Problems

It is now known that a large number of languages of encodings of Yes-instances of
decision problems are NP -complete. We will now discuss some of the many NP -complete
problems.

Example 24.1 (k-Vertex Cover)

iven an undirected graph G = (V,E), a vertex cover for G is a subset C of E such
that for all v ∈ V , (u, v) ∈ C for some vertex u ∈ V . Recall that since G is an
undirected graph, the edge (u, v) is the same as the edge (v, u). The instance is an
undirected graph G = (V,E) and a positive integer k. The question is whether there
exists a vertex cover C ⊆ E for G with size at most k.

Solution. The set of instances of the k-Vertex Cover problem are the same as for the
k-Clique problem, so we use the same encoding scheme. The k-Vertex Cover problem is
NP -complete. We first show NP -hardness by showing that

k-Independent Set �P,M k-Vertex Cover.

�

Example 24.2 (k-Set Cover)

Given a finite set U with size m and a set S = {S0, S − 1, ..., Sn−1} of subsets of U ,
a set cover for U is a subset C of S such that

U =
⋃
S∈C

⋃
x∈S

x.

That is, a subset C of S such that every element of U is included in at least one
of the sets in C. The instance of this problem is a finite set U with some positive
size m, a set S = {S0, S1, ..., Sn−1} of subsets of U , and a positive integer k. the
question is whether there exists a set cover C ⊆ S for U with size at most k.

Solution. Renaming the elements of U as required, we can assume that

U = {x0, x1, ..., xm−1}.

87

David Ng Design and Analysis of Algorithms I

Consider the alphabet

ΣS = {x, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, {, }, , }.

• The set U can be encoded as the string e(U) ∈ Σ∗S consisting of a string of m 1’s
(the unary representation of its size). Using a unary encoding ensures that the
encoding of an instance of the Set Cover problem has a length that is at least linear
in U . This is reasonable and simplifies the proof.

• For 0 ≤ i ≤ m− 1, the element xi of U can be encoded using the string e(xi) ∈ Σ∗S
that begins with x and ends with the unpadded decimal representation of i.

• A set Si of U can be encoded by the string e(Si) ∈ Σ∗S that begins with {, continues
with the encodings of the elements of Si, separated by commas and sorted by
increasing order of index, and ends with }.

• The collection S can now be encoded by the string e(S) ∈ Σ∗S that begins with {,
continues with the encodings of each of the sets S0, S1, ..., Sn−1 ⊆ U included in S,
each separated by commas, and ends with }.

• The positive integer k can be encoded by the string e(k) ∈ Σ∗S using its unpadded
decimal representation.

Thus, an instance of the Set Cover problem can now be encoded by the string e(U), e(S),
e(k).

If this encoding scheme is used, then with a bit of tedious work, one can show that
the language of encodings of instances of the Set Cover problem is in P . It can also be
shown that the language of encodings of Yes-instances of this problem is in NP . In order
to show that the language of encodings of Yes-instances is NP -hard, we will show that

k-Vertex Cover �P,M k-Set Cover.

Suppose now that we have an encoding of an instance of the Vertex Cover problem
that includes an undirected graph G = (V,E) and a positive integer k. One can begin to
form an instance of the Set Cover problem by setting U = V . Each edge (u, v) ∈ E is
easily turned into a subset {u, v}. If one does this for every edge in E, then this produces
a collection S of subsets of U such that every set Si included in S is a set of size two.
Clearly, a subset C of E is a vertex cover for G if and only if the corresponding subset of
S is a set cover for U , and both of these subsets have the same size.

In essence, the Vertex Cover problem is a special case of the Set Cover problem, so it
is relatively simple to argue that k-Vertex Cover �P,M k-Set Cover, as required to argue
that the k-Set Cover problem is NP -hard. �

Example 24.3 (Hamiltonian Cycle)

Once again, we consider an undirected graph G = (V,E). Recall that a cycle in G is
a sequence

w0, w1, w2, ..., wk

of vertices in V such that k ≥ 2, (wi, wi+1) ∈ E for 0 ≤ i ≤ k − 1, and w0 = wk.
This is a simple cycle if w0, w1, ..., wk−1 are distinct. This is a Hamiltonian cycle
if this is a simple cycle and {w0, w1, w2, ..., wk−1} = V so that every vertex in V
is included. The instance is an undirected graph G = (V,E), and the question is
whether there exists a Hamiltonian cycle for G.

88

David Ng Design and Analysis of Algorithms I

Solution. Encodings of undirected graphs were described when defining an encoding
scheme for the k-Vertex Cover problem. These can be used to define an encoding scheme
for this problem such that the language of encodings of instances of the problem is in P .
It can be shown that the language of encodings of Yes-instances for this problem is in
NP . NP -hardness can also be shown by making use of widgets or gadgets to construct a
graph from an instance of k-Vertex Cover, or from 3-CNF Satisfiability (yes, this is not a
proof). �

Example 24.4 (Traveling Salesman Problem)

The Traveling Salesman problem concerns the situation where a traveling salesperson
must visit a finite set S of cities. Distances are defined between cities, so there is
a well-defined total function d : S × S → N. The salesperson wants to visit all the
cities, and get back to the home city while traveling as short a distance as possible.
The distance from city x to city y is the same as the distance from city y to city x,
so that one might choose to model the set of cities as an undirected graph (rather
than a directed graph) with weights associated with edges. The instance is a finite
set S with positive size n, a total function d : S × S → N such that d(x, y) = d(y, x)
for all x, y,∈ N, and a positive integer k. The question is whether there exists a tour
so that

n−1∑
i=0

d(xi, xi+1) ≤ k.

Recall that a tour is a sequence

x0, x1, ..., xn

where {x0, x1, ..., xn−1} = S (meaning that they are distinct), and x0 = xn (meaning
that the salesperson arrives back home).

Solution. Renaming cities as required, it is reasonable to assume that

S = {x0, x1, ..., xn−1}.

Let
ΣT = {x, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,), {, }, , }.

• The set S can be encoded by the string e(S) ∈ Σ∗T consisting of a string of n 1’s,
which would be the unary representation of its size.

• For 0 ≤ i ≤ n− 1, an element xi of S can be encoded by the string e(xi) ∈ Σ∗T that
begins with x and continues until it ends with the unpadded decimal representation
of i.

• As usual, a non-negative integer i can be encoded using its unpadded decimal
representation e(i) ∈ Σ∗T .

• For 0 ≤ i, j ≤ n− 1 = ‖S‖ − 1 and l ∈ N, the information that d(xi, xj) = l can be
encoded using a string {e(xi), e(xj), e(l)} ∈ Σ∗T .

• Recall that d(xi, xj) = d(xj , xi). The value of d(xi, xi) is of no use for 0 ≤ i ≤ n−1,
since no tour could include a loop from xi back to itself for any xi ∈ S. Thus, the
encoding of the function d can be the string e(d) ∈ Σ∗T beginning with {, followed

89

David Ng Design and Analysis of Algorithms I

by the encodings as given previously for i and j such that 0 ≤ i < j ≤ n− 1 sorted
by nondecreasing value of i and increasing j for the same value of i, each separated
by commas, and ending with }.

• An instance of the Traveling Salesman problem can now be encoded as

e(s), e(d) ∈ Σ∗T .

Using this encoding scheme, it can be shown that the language of encodings of the
Traveling Salesman problem is in P , and that the language of encodings of Yes-instances
of this decision problem is in NP . One can show that the Traveling Salesman problem is
NP -hard by showing that Hamiltonian Cycle �P,M Traveling Salesman. �

Example 24.5 (Subset Sum)

The instance is a finite set S = {i0, i1, ..., in−1} of positive integers and a positive
integer target T . The question is whether there exists a subset C of S such that∑

x∈C
x = T.

Solution. Let
ΣSS = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, {, }, , }.

• A positive integer i can be encoded by its unpadded decimal representation e(i) ∈
Σ∗SS .

• A finite subset S of the set of positive integers can be encoded by the string
e(S) ∈ Σ∗SS that begins with {, continues with encodings of the elements of S sorted
by increasing order and separated by commas, and ends with }.

• An instance of the Subset Sum problem including a set S and positive integer
target T can now be encoded using the string

e(S), e(T) ∈ Σ∗SS .

One can show that the language of instances of the Subset Sum problem is in NP , and
that the language of encodings of Yes-instances in in NP . Subset Sum can be shown to
be NP -hard by showing that

3-CNF Satisfiability �P,M Subset Sum.

�

§24.2 Complications

Seemingly small changes to the computational problem often leads to large differences in
their proofs for membership in NP and NP -hard. Recall that the 3-CNF Satisfiability
problem is NP -complete. A boolean formula F is in 2-conjunctive normal form if it is
in conjunctive normal form and every clause in F includes exactly two literals. This
can be used to define a 2-CNF Satisfiability problem. However, the 2-CNF Satisfiability
problem is in P . As noted previously, the Subset Sum problem is NP -complete. Let c
be a positive integer constant. One can define a Constrained Subset Sum problem by

90

David Ng Design and Analysis of Algorithms I

requiring that T ≤ nc where n = ‖S‖. It would be possible to use dynamic programming
or memoization to design a deterministic algorithm that solves the Constrained Subset
Sum problem using a number of steps that is at most polynomial with respect to the
length of the input string in the worst case.

There is a genre of problem that is often wrongly claimed to be NP -complete
(even in published papers) via reduction from this special case of Subset Sum.

§24.3 Encodings

A variety of objects have now been discussed, including integers, Boolean formulas, truth
assignments, undirected graphs, and sets of non-negative integers. These have been used
to define languages corresponding to a variety of decision problem, and certificates when
describing verification algorithms for languages in NP . Some choices made when defining
encoding schemes were quite arbitrary. However, these choices can change the languages
that are defined, even when one starts with the same decision problem to be modeled.

Consider a set I of objects, possibly the set of valid inputs for a decision problem, or
the set of objects whose encodings will be used as certificates for a verification algorithm.
Recall that an encoding scheme for I is a well-defined mapping

e : I → P (Σ∗) ,

from elements of I to sets of strings in Σ∗ for some alphabet Σ, satisfying the following
properties.

• The set e(α) is nonempty for all α ∈ I.

• These sets are disjoint. That is, if α, β ∈ I and α 6= β, then e(α ∩ e(β) = {}.

Definition 24.6. Now, suppose that e1 : I → P (Σ∗1) and e2 : I → P (Σ∗2) are two
different encoding schemes for the same set I. The encoding schemes e1 and e2 are
polynomially equivalent if there exists total functions f1,2 : Σ∗1 → Σ∗2 and f2,1 : Σ∗2 →
Σ∗1 such that the following properties hold.

• For all α ∈ I and every string ω ∈ Σ∗1,

ω ∈ e1(α) ⇐⇒ f1,2(ω) ∈ e2(α).

• For all α ∈ I and every string µ ∈ Σ∗2,

µ ∈ e2(α) ⇐⇒ f2,1(µ) ∈ e1(α).

• Both functions f1,2 and f2,1 can be computed using a deterministic Turing machine
using time that is at most polynomial with respect to the length of the input strings.

91

David Ng Design and Analysis of Algorithms I

Example 24.7

Suppose that I = N. Consider encoding schemes for N as follows.

• Σ1 = {0, 1, ..., 9}. For every natural number n, e1(n) is the set with size one
including the unpadded decimal representation of n.

• Σ2 = Σ1. For every natural number n, e2(n) is the infinite set including all
decimal representations of n, including representations padded with leading
zeroes.

• Σ3 = {0, 1}. For every natural number n, e3(n) is the set with size one,
including the unpadded binary representation of n.

• Σ4 = {1}. For every natural number n, e4(n) is the set with size one, including
the unary representation (the string in Σ∗4 with length n).

Claim 24.8. If 1 ≤ i, j ≤ 3, then the encoding schemes ei and ej are polynomially
related.

Proof. This follows by an easy proof, though I do not know what that proof is.

Claim 24.9. None of e1, e2, or e3 is polynomially related to e4.

Proof. Note that the length of the unary encoding of n has length exponential in the
lengths of either the unpadded decimal or binary representation of n. Thus, there is no
function mapping either decimal or binary representations to unary representations that
can be computed using a deterministic Turing machine in polynomial time.

Suppose now that I is a set of instances of a decision problem. Let e1 : I → P (Σ∗1)
and e2 : I → P (Σ∗2) be encoding schemes for I. Let Y ⊆ I be the set of Yes-instances of
the decision problem and, for i ∈ {1, 2}, let

Li =
⋃
α∈Y

ei(α) ⊆ Σ∗1,

the language of encodings of Yes-instances of the decision problem using encoding
ei. Suppose that e1 and e2 are polynomially equivalent and consider the functions
f1,2 = Σ∗1 → Σ∗2 and f2,1 : Σ∗2 → Σ∗1 included in the definition of polynomially equivalent
encoding schemes. The definitions now given imply that f1,2 is a polynomial-time many-
one reduction from L1 to L2 and that f2,1 is a polynomial-time many-one reduction from
L2 to L1. This can be used to proved the following proposition.

92

David Ng Design and Analysis of Algorithms I

Proposition 24.10

Suppose that e1, e2, L1, and L2 are as given previously and that the encoding
schemes e1 and e2 are polynomially equivalent.

1. L1 ∈ P ⇐⇒ L2 ∈ P.

2. L1 ∈ NP ⇐⇒ L2 ∈ NP.

3. L1 ∈ NP -hard ⇐⇒ L2 ∈ NP -hard.

4. L1 ∈ NP -complete ⇐⇒ L2 ∈ NP -complete.

Thus, decisions made to define encodings (and encoding schemes) do not matter,
so long as the different decisions result in encoding schemes that can be proved
polynomially equivalent.

93

	September 12, 2017
	Introduction

	September 14, 2017
	Proofs of Correctness
	Importance of Algorithm Correctness
	Bound Functions and Assertions
	Trace of Execution and Recursion Trees

	September 19, 2017
	Proof of Correctness - While Loop
	Establishing Loop Invariants
	Partial Correctness
	Bound Function for While Loops
	Termination

	September 21, 2017
	Running Time - While Loop
	Storage Space - While Loop
	Summation Identities (high school math)
	Bounding Summation Terms
	Running Time Considerations

	September 26, 2017
	Running Time - Recursion
	Storage Space - Recursion

	September 28, 2017
	Asymptotic Notation
	Big-Oh Notation
	Big-Omega Notation
	Big-Theta Notation
	Little-Oh Notation
	Little-Omega Notation
	Standard Functions

	October 3, 2017
	Divide and Conquer - Sorting

	October 5, 2017
	Divide and Conquer - Integer Multiplication
	Master Theorem

	October 10, 2017
	Divide and Conquer - Closest Points in a Plane

	October 12, 2017
	Divide and Conquer - Median Finding and Selection

	October 17, 2017
	Dynamic Programming
	Memoization
	Memoization Efficiency
	Dynamic Programing vs Memoization

	October 19, 2017
	Divide and Conquer - Longest Common Subsequence
	Dynamic Programming - Longest Common Subsequence
	Memoization - Longest Common Subsequence

	October 24, 2017
	October 31, 2017
	Greedy Algorithms - Minimizing Sum of Completion Times

	November 2, 2017
	Greedy Algorithms - Unweighted Activity Selection
	Greedy Algorithm Design Process

	November 7, 2017
	Greedy Algorithms - Data Compression and Huffman Trees

	November 9, 2017
	Greedy Algorithms - Offline Caching

	November 14, 2017
	Computational Problems and Languages
	Turing Machines
	Complexity Class P
	Cobham-Edmonds Thesis
	Historical Figures in Theory of Computation

	November 16, 2017
	Nondeterministic Turing Machines
	Verification of a Language
	Verification Process
	Equivalence of Models
	Complexity Class NP

	November 21, 2017
	Computing Functions
	Reducibilities
	Polynomial-Time Many-One Reduction Process
	Historical Figures in Theory of Computation Cont'd

	November 23, 2017
	NP-Completeness
	Historical Figures in Theory of Computation Cont'd

	November 28, 2017
	Establishing NP-Completeness

	November 30, 2017
	December 5, 2017
	Additional NP-Complete Problems
	Complications
	Encodings

